ELEMENTARY
NUMERICAL ANALYSIS

ELEMENTARY
NUMERICAL ANALYSIS

Third Edition

KENDALL ATKINSON
WEIMIN HAN

University of Iowa

John Wiley & Sons, Inc.

ASSOCIATE PUBLISHER Laurie Rosatone
SENIOR MARKETING MANAGER Julie Z. Lindstrom

ASSISTANT EDITOR Jennifer Battista
PROGRAM ASSISTANT Stacy French
SENIOR PRODUCTION EDITOR Ken Santor
SENIOR DESIGNER Dawn Stanley
ILLUSTRATION EDITOR Sandra Rigby

This book was set in IBigX by Techsetters Inc. and printed and bound by
R. R. Donnelley Crawfordsville. The cover was printed by Phoenix Color
Corporation.

This book is printed on acid free paper. [}

Copyright © 2004 John Wiley & Sons, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except as permitted under Sections 107 or 108 or the 1976 United States
Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance
Center, Inc. 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-
4470. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-
6011, fax (201) 748-6008, E-Mail: PERMREQ@WILEY.COM.

To order books or for customer service please call 1-800-CALL WILEY (225-5945).

Library of Congress Cataloging-in-Publication Data

Atkinson, Kendall E.
Elementary numerical analysis / Kendall Atkinson and Weimin Han.~3rd ed.
p. cm.
Includes bibliographical references and index.
ISBN 0-471-43337-3)
1. Numerical analysis. I. Han, Weimin. II. Title.

QA297.A83 2004
519.4-dc21

2003053836

To our children
Elizabeth and Kathryn
Elizabeth and Michael

PREFACE

......l...0..l...'.........l......lI..'..ll.l..l..‘...'l.ll...l..l'll.........‘

This book provides an introduction to numerical analysis and is intended to be used by
undergraduates in the sciences, mathematics, and engineering. The main prerequisite is
a one-year course in the calculus of functions of one variable, but some familiarity with
computers is also needed. With this background, the book can be used for a sophomore-
level course in numerical analysis. The last four chapters of the book present numerical
methods for linear algebra, ordinary differential equations, and partial differential equa-
tions. A background in these subjects would be helpful, but these chapters include the
necessary introduction to the theory of these subjects.

Students taking a course in numerical analysis do so for a variety of reasons. Some
will need it in studying other subjects, in research, or in their careers. Others will be
taking it to broaden their knowledge of computing. When we teach this course, we have
several objectives for the students. First, they should obtain an intuitive and working
understanding of some numerical methods for the basic problems of numerical analysis
(as specified by the chapter headings). Second, they should gain some appreciation of the
concept of error and of the need to analyze and predict it. And third, they should develop
some experience in the implementation of numerical methods by using a computer. This
should include an appreciation of computer arithmetic and its effects.

vii

viii

Preface

The book covers most of the standard topics in a numerical analysis course, and
it also explores some of the main underlying themes of the subject. Among these are
the approximation of problems by simpler problems, the construction of algorithms,
iteration methods, error analysis, stability, asymptotic error formulas, and the effects
of machine arithmetic. Because of the level of the course, emphasis has been placed
on obtaining an intuitive understanding of both the problem at hand and the numerical
methods being used to solve it. The examples have been carefully chosen to develop this
understanding, not just to illustrate an algorithm. Proofs are included only where they
are sufficiently simple and where they add to an intuitive understanding of the result.

For the computer programming, the preferred language for introductory courses in
numerical analysis is MATLAB. A short introduction is given in Appendix D; and the
programs in the text serve as further examples. The students are encouraged to modify
these programs and to use them as models for writing their own MATLAB programs.
When the authors teach this course, we also provide links to other sites that have online
MATLAB tutorials.

The MATLAB programs are included for several reasons. First, they illustrate the
construction of algorithms. Second, they save the students time by avoiding the need
to write many programs, allowing them to spend more time on experimentally learning
about a numerical method. After all, the main focus of the course should be numerical
analysis, not learning how to program. Third, the programs provide examples of the
language MATLAB and of reasonably good programming practices when using it. Of
course, the students should write some programs of their own. Some of these can be
simple modifications of the included programs; for example, modifying the trapezoidal
rule integration code to obtain one for the midpoint rule. Other programs should be more
substantial and original. All of the codes in the book, and others, are available from the
book’s Website at John Wiley, at

http://www.wiley.com/college/atkinson
The authors also maintain a site for these codes and other course materials, at
http://www.math.uiowa.edu/ftp/atkinson/ENA_Materials

In addition to the MATLAB programs in the text, the authors are experimenting with
graphical user interfaces (GUISs) to help students explore various topics using only menus,
query windows, and pushbuttons. Several of these have been written, including some
to explore the creation and analysis of Taylor polynomial approximations, rootfinding,
polynomial interpolation with both uniformly spaced nodes and Chebyshev nodes, and
numerical integration. The GUTIs are written using the MATLAB GUI development envi-
ronment, and they must be run from within MATLAB. These GUIs are available from the
authors’ Website given above, and the authors are interested in feedback from instructors,
students, and other people using the GUIs.

There are exercises at the end of each section in the book. These are of several
types. Some exercises provide additional illustrations of the theoretical results given in
the section, and many of these exercises can be done with either a hand calculator or with

Preface) ix

a simple computer program. Other exercises are for the purpose of further exploring
the theoretical material of the section, perhaps to develop some additional theoretical
results. - In some sections, exercises are given that require more substantial programs;
many'of these exercises can be done in conjunction with package programs like those
discussed in Appendix C.

The third edition of this book contains a new chapter and two new sections, and
the book has been reorganized when compared to the second edition. The section on
computer arithmetic has been rewritten and it now concentrates on the IEEE floating-
point format for representing numbers in computers; the section on binary arithmetic has
been moved to the new Appendix E. The new sections are Section 4.7 on the least squares
approximation of functions (including an introduction to Legendre polynomials), and
Section 8.8 on the two-point boundary value problem. The new Chapter 9 is on numerical
methods for the classic second order linear partial differential equations in two variables.
In addition, a number of other parts of the text have been rewritten, and examples and
many new problems have been added.

In teaching a one-semester course from this textbook, the authors usually cover
much of Chapters 1-6 and 8. The linear algebra material of Chapter 6 can be introduced
at any point, although the authors generally leave it to the second half of the course.
The material on polynomial interpolation in Chapter 4 will be needed before covering
Chapters 5 and 8. The textbook contains more than enough material for a one-semester
course, and an instructor has considerable leeway in choosing what to omit.

We thank our colleagues at the University of Towa for their comments on the text.
We also thank the reviewers of the manuscript for their many suggestions, which were
very helpful in preparing the third edition of the book. We thank Cymie Wehr for having
done an excellent job of creating a BIEX version of the second edition. It was used in
preparing this third edition and it saved us a great deal of time and effort. We thank
Brian Treadway for his invaluable assistance in helping us to navigate BIEX. The staff
of John Wiley have been supportive and helpful in this project, and we are grateful to
them.

Kendall E. Atkinson
Weimin Han

Iowa City, Iowa
May 2003

CONTENTS

ooolu.l...‘oal‘.ono......0..000..-0..l.lll.00..0......"'...‘00..0.nl'l...tc..‘

CuarTER 1 TAYLOR POLYNOMIALS 1

1.1 The Taylor Polynomial 2

1.2 The Error in Taylor’s Polynomials 11
1.2.1 Infinite Series 15

1.3 Polynomial Evaluation 23
1.3.1 An Example Program 25

CHAPTER 22 ERROR AND COMPUTER ARI’IHMETIC 33

2.1 Floating-Point Numbers 34
2.1.1 Accuracy of Floating-Point Representation 38
2.1.2 Rounding and Chopping 39
2.1.3 Consequences for Programming of Floating-Point
Arithmetic 40
2.2 Errors: Definitions, Sources, and Examples 43
2.2.1 Sources of Error 45
2.2.2 Loss-of-Significance Errors 47
2.2.3 Noise in Function Evaluation 51
2.2.4 Underflow and Overflow Errors 52
2.3 Propagation of Error 57
2.3.1 Propagated Error in Function Evaluation 60
2.4 Summation 63
2.4.1 Rounding versus Chopping 65

xii

Contents

2.4.2. A Loop Error 67
2.4.3 Calculation of Inner Products 67

CuaPTER 3 ROOTFINDING

3.1

3.2

3.3

3.4

3.5

The Bisection Method 72

3.1.1 Error Bounds 74

Newton'’s Method 79

3.2.1 Error Analysis 83

3.3.3 Error Estimation 85

Secant Method 90

3.3.1 Error Analysis 91

3.3.2 Comparison of Newton and Secant Methods 94
3.3.3 The MATLAB Function 95

Fixed Point Iteration 97

3.4.1 Aitken Error Estimation and Extrapolation 102
3.4.0, Higher-Order Iteration Formulas 105
1lI-Behaving Rootfinding Problems 109

3.5.1 Stability of Roots 112

CHAPTER 4 INTERPOLATION AND APPROXIMATION

4.1

4.2

4.3

4.4

4.5

Polynomial Interpolation 118

4.1.1 Linear Interpolation 119

4.1.2. Quadratic Interpolation 120

4.1.3 Higher-Degree Interpolation 123

4.1.4 Divided Differences 124

4.1.5 Properties of Divided Differences 126

4.1.6 Newton'’s Divided Difference Interpolation 128
Error in Polynomial Interpolation 138

4.2.1 Another Error Formula 141

4.2.2 Behavior of the Error 142

Interpolation Using Spline Functions 147

4.3.1 Spline Interpolation 149

439 Construction of the Interpolating Natural Cubic Spline
4.3.3 Other Interpolating Spline Functions 151

4.3.4 The MATLAB Program spline 154

The Best Approximation Problem 159)
4.4.1 Accuracy of the Minimax Approximation 163
Chebyshev Polynomials 165

4.5.1 The Triple Recursion Relation 167

4.5.2 The Minimum Size Property 168

71

117

149

Contents - : xiii

4.6 . A Near-Minimax Approximation Method 171
4.6.1 0Odd and Even Functions 176
4.7 Least Squares Approximation 178
©4.7.1 Legendre Polynomials 181
4.7.2 Solving for the Least Squares Approximation 183
4.7.3 Generalizations of Least Squares Approximation 185

CHAPTER 5 NUMERICAL INTEGRATION AND .
DIFFERENTIATION 189

5.1 The Trapezoidal and Simpson Rules 190
5.1.1 Simpson’s Rule 196
5.2 Error Formulas 203
5.2.1 An Asymptotic Estimate of the Trapezoidal Error 205
5.2.2 Error Formulas for Simpson’s Rule 207
5.2.3 " Richardson Extrapolation 210
5.2.4 Periodic Integrands 211
5.3 Gaussian Numerical Integration 219
5.3.1 Weighted Gaussian Quadrature 226
5.4 Numerical Differentiation 232
5.4.1 Differentiation Using Interpolation 234
5.3.2 The Method of Undetermined Coefficients 236
5.3.3 Effects of Error in Function Values 238

CHAPTER 6 SOLUTION OF SYSTEMS OF LINEAR EQUATIONS 243

6.1 Systems of Linear Equations 244
6.2, Matrix Arithmetic 248
6.2.1 Arithmetic Operations 249
6.2.2 Elementary Row Operations 253
6.2.3 The Matrix Inverse 254
6.2.4 Matrix Algebra Rules 256
6.2.5 Solvability Theory of Linear Systems 258
6.3 Gaussian Elimination 264
6.3.1 Partial Pivoting 270
6.3.2 Calculation of Inverse Matrices 273
6.3.3 Operations Count 276
6.4 The LU Factorization 283
6.4.1 Compact Variants of Gaussian Elimination 285
6.4.2 Tridiagonal Systems ™ 287
6.4.3 MATLAB Built-in Functions for Solving Linear Systems 291

Contents

6.5 Error in solving Linear Systems 294
6.5.1 The Residual Correction Method 296
6.5.2 Stability in Solving Linear Systems 297
6.6 TIteration Methods 303 N
6.6.1 Jacobi Method and Gauss-Seidel Method 303
6.6.2 General Schema 306
6.6.3 The Residual Correction Method 310

CHAPTER 7 NUMERICAL LINEAR ALGEBRA: ADVANCED
TOPICS 319

7.1 Least Squares Data Fitting 319
7.1.1 The Linear Least Squares Approximation 322
7.1.2 Polynomial Least Squares Approximation 324
7.2 The Eigenvalue Problem 333
7.2.1 The Characteristic Polynomial 335
7.2.2 Eigenvalues for Symmetric Matrices 337
7.2.3 The Nonsymmetric Eigenvalue Problem 339
7.2.4 The Power Method 340
7.2.5 Convergence of the Power Method 342
7.2.6 MATLAB Eigenvalue Calculations 345
7.3 Nonlinear Systems 352
7.3.1 Newton’s Method 352
7.3.2 The General Newton Method 356
7.3.3 A Modified Newton’s Method 361

CuaPTER 8 ORDINARY DIFFERENTIAL EQUATIONS 367

8.1 Theory of Differential Equations: An Introduction 368
8.1.1 General Solvability Theory 372
8.1.2 Stability of the Initial Value Problem 373
8.1.3 Direction Fields 376

8.2 Euler’s Method 379

8.3 Convergence Analysis of Euler’s Method 386
8.3.1 Asymptotic Error Analysis 390
8.3.2 Richardson Extrapolation 391

8.4 Numerical Stability, Implicit Methods 394
8.4.1 The Backward Euler Method 396
8.4.2 The Trapezoidal Method 400 !

8.5 Taylor and Runge-Kutta Methods 408
8.5.1 Runge-Kutta Methods 411

Contents -

.8.5.2 Error Prediction and Control 415
8.5.3 MATLAB Built-in Functions 418
8.6 Multistep Methods 423 :
8.7 (Systems of Differential Equations 432
8.7.1 Higher-Order Differential Equations 434
8.7.2 Numerical Methods for Systems 437
8.8 Finite Difference Method for Two-Point Boundary Value
'~ Problems 44,

CHAPTER 9 FINITE DIFFERENCE METHOD FOR PDES

9.1 The Poisson Equation 453

9.2 One-Dimensional Heat Equation 466
9.2.1 Semidiscretization 467
9.2.2 Explicit Full Discretization 468
9.2.3 Implicit Full Discretization 473

9.3 One-Dimensional Wave Equation 481

APPENDIX A MEAN VALUE THEOREMS

APPENDIX B MATHEMATICAL FORMULAS

B.1 Algebra 501

B.2 Geometry 502

B.3 Trigonometry 505
B.4 Calculus 507

AppENDIX C NUMERICAL ANALYSIS SOFTWARE PACKAGES

C.1 Commercial Packages 512

C.2 Public Domain Packages 512

C.3 Interactive Numerical Computation Environments 515
C.4 Symbolic Computation Environments 515

C.5 Literature of Mathematical Software 516

ArPENDIXD MATLAB: AN INTRODUCTION

451

491

501

511

517

xvi

Contents

AprPENDIX E THE BINARY NUMBER SYSTEM
E.l1 Conversion from Decimal to Binary 528
E.2 Hexadecimal Numbers 530

ANSWERS TO SELECTED PROBLEMS

BIBLIOGRAPHY

INDEX

525

533

555

557

TAYLOR POLYNOMIALS

2089200000 000000000 0008000000000V OBN0000D00V00000000P0S0PIVNVIONOODONSONDOOVGOOCNOCDDOD

Numerical analysis uses results and methods from many areas of mathematics, partic-
ularly those of calculus and linear algebra. In this chapter we consider a very useful
tool from calculus, Taylor’s theorem. This will be needed for both the development and
understanding of many of the numerical methods discussed in this book.

The first section introduces Taylor polynomials as a way to evaluate other functions
approximately; and the second section gives a precise formula, Taylor’s theorem, for
.the error in these polynomial approximations. In the final section, we first discuss
how to evaluate polynomials, and then we derive and analyze a computable polynomial
approximation to a special function.

Other material from algebra and calculus is given in the appendices. Appendix A
contains a review of mean-value theorems, and Appendix B reviews other results from
calculus, algebra, geometry, and trigonometry.

There are several computer languages that are used to write programs to implement
the numerical methods we study in this text. Among the most important basic-level
computer languages are C, C++, Java, and Fortran. In this text we use a higher-level
language that allows us to manipulate more easily the mathematical structures we need

1

Chapter 1 TAYLOR POLYNOMIALS

in implementing numerical analysis procedures for solving mathematical problems. The
language is MATLAB, and it is widely available on all lines of computers. We will provide
examples of the use of MATLAB throughout this text, and we encourage students to work
with these programs. Experiment using them and modify them for solving related tasks.
A very brief introduction to MATLAB is given in Appendix D, and we also reference more
extensive introductions given elsewhere.

1.1. THE TAYLOR POLYNOMIAL

Example 1.1.1

Most functions f(x) that occur in mathematics cannot be evaluated exactly in any
simple way. For example, consider evaluating f(x) = cos x, &, or /X, without using
a calculator or computer. To evaluate such expressions, we use functions f(x) that
are almost equal to f(x) and are easier to evaluate. The most common classes of
approximating functions f (x) are the polynomials. They are easy to work with and they
are usually an efficient means of approximating f (x). A related form of function is the
piecewise polynomial function, and it also is widely used in applications; it is studied in
Section 4.3 of Chapter 4.

Among polynomials, the most widely used is the Taylor polynomial. There are
other more efficient approximating polynomials in the context of particular applications,
and we study some of them in Chapter 4. The Taylor polynomial is comparatively easy
to construct, and it is often a first step in obtaining more efficient approximations. The
Taylor polynomial is also important in several other areas of mathematics.

Let f(x) denote a given function, for example, e*, sin x, or log(x). [In this book,
log(x) always means the natural logarithm of x, not the logarithm of x to the base 10.]
The Taylor polynomial is constructed to mimic the behavior of f (x) at some pointx = a.
As aresult, it will be nearly equal to f(x) at points x near a.

To be more specific, as an example, find a linear polynomial p; (x) for which

pi(a) = f(a)
i@ = (@) (4D

Then, it is easy to verify that the polynomial is uniquely given by
px) = f@+ & —a)f'(a) (1.2)
The graph of y = p;(x) is tangent to that of y = f(x) at x = a.
Let f(x) = e* and a = 0. Then
pi(x) =1+x

The graphs of f and p; are given in Figure 1.1. Note that p;(x) is approximately e*
when x is near 0.

1.1 THE TAYLOR POLYNOMIAL 3

Figure 1.1. Linear Taylor approximation
?
To continue the construction process, consider finding a quadratic polynomial p, (x)

that approximates f (x) near x = a. Since there are three coefficients in the formula of
a quadratic polynomial, say,

p2(x) = by + byx + byx?

it is natural to impose three conditions on p;(x) to determine them. To better mimic the
behavior of f(x) atx = a, we require

p2(a) = f(a)
py(@) = f'(a) (1.3)
py(@) = f"(a)

It can be checked that these are satisfied by the formula

P =f@+&-a)f@+;5x-a’f" (1.4)

Example 1.1.2

Chapter 1 TAYLOR POLYNOMIALS

Figure 1.2. Linear and quadratic Taylor approximations

Continuing the previous example of f(x) = e* and a = 0, we have
pa(x) =1+ x + 5x?
See Figure 1.2 for a comparison with ¢* and p;(x). =

We can continue this process of mimicking the behavior of f(x) at x = a. Let
pn(x) be a polynomial of degree 7, and require it to satisfy

@) = fP@, j=01,...,n (1.5)

where £ (x) is the order j derivative of f(x). Then

(x -) (x—

on() = F@ + (& — @) F1(@) + o (@) 4 wa

—Z“ L 0@ | (16)

Example 1.1.3

Example 1.1.4

1.1 THE TAYLOR POLYNOMIAL 5

Table 1.1. Taylor approximations to e*

x pi(x) pa(x) p3(x) e

—1(.0 0 0.500 0.33333 0.36788
-0.5 0.5 0.625 0.60417 0.60653
-0.1 0.9 0.905 0.90483 0.90484
0 1.0 1.000 1.00000 1.00000
0.1 1.1 1.105 1.10517 1.10517
0.5 L5 1.625 1.64583 1.64872

1.0 2.0 2.500 2.66667 2.71828

In the formula, f©@(a) = f(a), and

j:={1’ j=0
TliG-D @M, j=1234,..

which is called “j factorial.” If in (1.6) we need to reference explicitly the dependence
on the point a, we write p,(x; a). The polynomial p,(x) in (1.6) is called the Taylor

polynomial of degree n for the function f(x) and the point of approximation a. [Note,
however, that the polynomial p, (x) has actual degree less than 7 if £® (a) = 0.]

Again let f(x) = e* and a = 0. Then
P =¢, fP0) =1, forallj>0
Thus

1 1 " xf
P =Tdx+—x2d . t—x"=3 "2 a.mn
21 n! e J! :

Table 1.1 contains values of p; (x), p»(x), p3(x), and e* at various values of x in [—1, 1].
For a fixed x, the accuracy improves as the degree n increases. And for a polynomial of
fixed degree, the accuracy decreases as x moves away froma = 0. =

Let f(x) = ¢* and let the point a be an arbitrary point, not necessarily zero. Then
) =¢, Fa) = ¢, forall j >0

We obtain the formula

P“(x9a)=ea[1+(x—a)+21(x-a)+ = (x~a)]_e§(x~]—‘a)’

Notation

Example 1.1.5

Chapter 1 TAYLOR POLYNOMIALS

For instance,

n

pui) =e' Y &1 (1.8)

P

* The polynomial p, (x; 1) is most accurate for x ~ 1, and the polynomial p,(x; 0) [given

in (1.7)] is most accurate for x =~ 0. As a problem, compare the accuracy of p,(x;0)
and p,(x; 1) on the interval [—1, 2] for various values of n (cf. Problem 8). =

In this text, we use two symbols that mean “approximately equals.” The symbol “~”
is generally used with symbols. For example,

x~5
means that x is around 5; and
e ~1+zx, x=0

means e” is approximately 1 + x when x is around zero. The symbol “=" is generally
used with numbers, as in

2r = 6.2832
+/168 = 12.961

The symbol “=" is usually used with actual calculational error. We attempt to be
consistent in this usage, but sometimes it is not clear which symbol should be used. =

Let f(x) =log(x) and a = 1. Then f(1) =log(1l) = 0. By induction, for j > 1,

FO@ = (1 - Dl
xJ
FOI) = (=171 G = D!

If this is used in (1.6), the Taylor polynomial is given by

P = (= 1) = S = D 2= 1 =k (P - 1)
2 3 n
n _ i1 .)
=y O Gy - (19)
P '

See Figure 1.3 for graphs of log(x), p1(x), p2(x), and p3(x).

1.1 THE TAYLOR POLYNOMIAL 7

y=logx
Y=py(5) e
y=py(0).......
y=p3(0). — .

Figure 1.3. Taylor approximations of log(x) about x = 1

Throughout this text we will state a few general observations or rules to use when
considering the numerical analysis of mathematical problems.

GENERAL OBSERVATION:

When considering the solution of a mathematical problem

for which no direct method of solution is known, replace it

with a “ nearby problem” for which a solution can be computed.

(1.10)

In the current situation, we are replacing the evaluation of a function such as * with the
evaluation of a polynomial.

MATLAB PROGRAM: Evaluating a Taylor polynomial. Following is a MATLAB
program that will calculate several Taylor polynomial approximations to ¢* on an interval
[—b, b], with the value of b to be input into the program. The program will evaluate
the Taylor polynomials of degrees 1, 2, 3, and 4 at selected points x in the interval
[—b, b], printing the errors in them in tabular form. The output will be directed to both
the computer screen of the user and to a file exp_taylor for later printing.

Chapter 1 TAYLOR POLYNOMIALS

% TITLE: Evaluate Taylor polynomials for exp(x) about x = 0
%

% This evaluates several Taylor polynomials and their errors
% for increasing degrees. The particular function being

% approximated is exp(x) on [-b,b]. :

% Initialize

b = input(’Give the number b defining the interval [-b,b] ’);
h = b/10;

x = -b:h:b;

max_deg = 4;

% Produce the Taylor coefficients for the function exp(x) when
% expanded about the point a = 0. The coefficients are stored

% in the array c, which will have length max_deg+l.

¢ = ones(max_deg+1,1);

fact = 1; N
for i = 1:max_deg

fact = i*fact;

c(i+1) = 1/fact;
end

% Calculate the Taylor polynomials

pl = polyeval(x,0,c,1);
p2 = polyeval(x,0,c,2);
p3 = polyeval(x,0,c,3);
p4 = polyeval(x,0,c,4);

% Calculate the errors in the Taylor polynomials
true = exp(x);

errl = true-pl;
err2 = true-p2;
err3 = true-p3;
errd = true-p4;

% Print the errors in tabular format

diary exp_taylor

disp(’ bd exp (x) errl err2 err3 errd?’)

for i = 1:length(x) '

fprintf (°%7.3£%10.3£%14.3e%14.3e%14.3e%14.3e\n’, ...

x(1),true(i),erri(i),err2(i) ,err3(i) ,errd(i))

end '

diary off

PROBLEMS

1.1 THE TAYLOR POLYNOMIAL ' 9

The program uses the following program, named polyeval, to evaluate polynomials.
The method used in the program is discussed in Section 1.3.

function value = polyeval(x,alpha,coeff,n);

%

% function value = polyeval(x,alpha,coeff,n)

pA

% Evaluate a Taylor polynomial at the points given in x, with

% alpha the point of expansion of the Taylor polynomial, and

% with n the degree of the polynomial. The coefficients are to
% be given in coeff; and it is assumed there are n+l entries in
% coeff with coeff(1) the constant term in the polynomial

value = coeff(nt+l)*ones(size(x));
z = x—alpha;
for i = n:-1:1

value = coeff(i) + z.*xvalue;
end

1. Using (1.9), compare log(x) and its Taylor polynomials of degrees 1, 2, and 3 in
the manner of Table 1.1. Do this on the interval [1, 2].

2. Producethe linear and quadratic Taylor polynomials for the following cases. Graph
the function and these Taylor polynomials.
@ f=Vx,a=1 ®) f(x)=sinkx),a=mn/4
© fx)=e® g=0 d fx)=log(l+e%),a=0

N

3. Produce a general formula for the degree n Taylor polynomials for the following
functions, all using @ = 0 as the point of approximation.

(@ 1/0-x) (b) sin(x) © 1+x
(d) cos(x) (e): 1+ x)13

4. Does f(x) = 3/x have a Taylor polynomial approximation of degree 1 based on
* expanding about x = 0?7 x = 1? Explain and justify your answers.

S. Use the Taylor polynomials of degrees 1, 2, and 3 for the function f (x) «/ + X,
obtained in Problem 3(c), to compute approxmimate values of /0.9, +/1.1, +/1.
+/2.0 and compare them with the exact values to 8 or more digits.

6. Repeat Problem 5, but with f(x) = sinx and x = 0.01, 0.1, 0.5, 1.0.

7. Compare f(x) = sin(x) with its Taylor polynomials of degrees 1, 3, and 5 on the
interval —7/2 < x < 7/2; a = 0. Produce a table in the manner of Table 1.1.

10

Chapter 1 TAYLOR POLYNOMIALS

10.

12.

13.

14.

Let f(x) = e*; recall the formulas (1.7) and (1 .8)for p,(x; 0) and p, (x; 1), respec-
tively. Compare p, (x; 0) and p,(x; 1) to e* on the interval [—1, 2] forn = 1,2, 3.
Discuss your resuits.

(@) Produce the Taylor polynomials of degrees 1, 2, 3, and 4 for f x)=e",
with a = 0 the point of approximation.

(b) Using the Taylor polynomials for ¢', substitute # = —x to obtain polynomial
approximations for e~*. Compare with the results in (g).

(@) Produce the Taylor polynomials of degrees 1, 2, 3, 4 for f(x) = ¢ with
a = 0 the point of approximation.

(b) Using the Taylor polygomials for e', substitute ¢ = x? to obtain polynomial
approximations for e* . Compare with the results in (a).

The quotient

et —1

gx) =
is undefined for x = 0. Approximate e* by using Taylor polynomials of degrees
1, 2, and 3, in turn, to determine a natural definition of g(0).

The quotient

o) = log(1l +x)

is undefined for x = 0. Approximate log(1 + x) using Taylor polynomials of
degrees 1, 2, and 3, in turn, to determine a natural definition of g(0).

(a) As an alternative to the linear Taylor polynomial, construct a linear polyno-
mial g (x), satisfying

g@=fl@, q@®)=7[®)

for given points a tand b.

(b) Applythisto f(x) = " witha = Oand b = 1. For 0 < x < 1, numerically
compare g(x) with the linear Taylor polynomial of this section.

For f(x) = €, construct a cubic polynomial g (x) for which

q(0) = f(0), gy =F(1)
qO =0, qdO=F0

Numerically compare it-to ¢* and the Taylor polynorhial p3(x) of (1.6) for 0 <
x <1

1.2 THE ERROR IN TAYLOR'’S POLYNOMIAL 11

Hint: Write g (x) = by + bix + byx? + b3x3. Determine by and b, from the
conditions atx = 0. Then obtain a linear system of two equatlons for the remaining
coefficients b, and bs. .

{

1.2. THE ERROR IN TAYLOR’S POLYNOMIAL

Theorem 1.2.1

Example 1.2.2

To make practical use of the Taylor polynomial approximation to f (x), we need to know
its accuracy. The following theorem gives the main tool for estimating this accuracy.
We present it without proof, since it is given in most calculus texts.

(Taylor’s remainder) Assume that f(x) has n + 1 continuous derivatives on an interval
@ < x < p, andlet the point a belong to that interval. For the Taylor polynomial DPn(x)of
(1.6),1et R, (x) = f(x) — p,(x) denote the remainder in approximating f(x) by p,(x).
Then

Ry = S0 iy g <r<p (L11)
n (+1)' X/ —_— — .

with ¢, an unknown point between a and x.

Let f(x) = ¢* and @ = 0. The Taylor polynomial is given in (1.7). From the above
theorem, the approximation error is given by

xn+l

€ — pp(x) = mec, n=>0 (1.12)

with ¢ between 0 and x. From this formula, we can prove that for each fixed x, the
error tends to 0 as n — co; this should be intuitively clear when |x| < 1. Also from the
formula, it appears that for each fixed value of », the error becomes larger as x moves
away from 0. To illustrate this graphically, it is good to graph the errors ¥ — p, (x)
rather than simply graphing the function ¢* and the polynomials p,(x), in contrast to
what was done in Section 1.1. This is illustrated in Figure 1.4 for degrees n = 1,2, 3, 4
on the interval [—1, 1]. The graph illustrates the results stated above. =

Example 1.2.3 As a special case of (1.12), let x = 1. Then from a.n

1
e pu(D) =141+ +3,+ o

12

Chapter 1 TAYLOR POLYNOMIALS

0.75 F
y=e-p(x) ——
y=et-py(x) ===
y=e€ - pa(x)
y= et py(x) smre 0.50

Figure 1.4. Errors in Taylor polynomial approximations to e*

and from (1.12)

Cc

e
e'—pn(l):Rn(l): (l’l-‘l'—]_—)—!’ 0<c<l1
Since ¢ < 3, we can bound R, (1) as follows:
1 e 3
< R,(1) = <
@+ D! 4+ 4+

This uses the inequality ¢® < e¢ < e'. As an actual numerical example, suppose we want
to approximate e by p,(1) with

Ry(1) <107°

Since we only know an upper bound for R, (1), we can obtain the desired error by making
the upper bound satisfy

3
— <107
n+1

This is true when n > 12; thus, pi2(1) is a sufficiently accurate approximation to e. &

The formulas (1.6) and (1.11) can be used to form approximations and remainder
formulas for most of the standard functions encountered in undergraduate mathematics.

Example 1.2.4

1.2 THE ERROR IN TAYLOR’S POLYNOMIAL 7 13

For later reference, we give some of the more important ones.

2 X" xn+l

‘ X X~ C ;
=1 —ee 1.
{ e Fx S TER (1.13)
. x3 x5 el 2n—1
(1.14)
2n+1
)
+ (=1) oD cos(c)
x2 x4 . x’ln
COS(x)=1“§'—+‘Z!'—-+(‘“1)m
. (1.15)
2n+2
-1 nt+l__*~
D Sy eos@
1) . xn+1
— =l x x4 s x#1 (1.16)
1—x 1—x
o a o 2 o n
1 +x) —1+(1)x+(2)x + +<n)x
(1.17)

« n+1 o—n-—1
1
+ (n n 1) X" (140

In this last formula, « is any real number. The coefficients (Z) are called binomial
coefficients and are defined by
o
(o) =1

In all of the formulas, except (1.16), the point c is between 0 and x. The proof of (1.16)
is taken up in Problem 10.

(a)za(a-—l)"‘(""k“"l) k=1,2,3,...,

k k! ’

Approximate cos(x) for |x| < 7 /4, with an error of no greater than 103, Since the point
¢ in the remainder of (1.15) is'unknown, we consider the worst possible case and make
it satisfy the desired error bound:

2n42
<1073,

[Ran1(x)]| < m <

for |x| <m/4

This uses |cos(c)| < 1. For this inequality to be true, we must have

(n./4)2n+2 - 10—5
Cn+2)! —

14

Chapter | TAYLOR POLYNOMIALS

which is satisfied when n > 3. The desired approximation is

¥2 x4t %
cos(x)~1--i+z—-é?

Many Taylor polynomials and remainder terms are not created directly from (1.6)
and (1.11). Instead, the above standard Taylor formulas are manipulated to obtain Taylor
approximations for other functions. As an example, consider constructing a Taylor
polynomial approximation to f(x) = ¢~ about x = 0. Begin by replacing x by ¢ in
(1.13), as below:

2 h f"'H

t
é=1+t4+=++—=+

(o
2 AT D

with ¢ an unknown number between 0 and ¢. This is valid for all real numbers ¢. Now
replace ¢ by —x2, yielding

4 6 n . 2n n+1 2n42
—x 1 2)C_ _ i .. =D"x (1) X c
e =1—-x"+ TR 4+ p + wE D e (1.18)

with ¢ an unknown number satisfying —x? < ¢ < 0. This gives the Taylor polynomial
approximation to e of degree 2n (and also of degree 2n +1). If you attempt to
construct this Taylor approximation directly, as in the manner of Section 1.1, then the
derivatives of e quickly become unmanageable.

As a somewhat more complicated example of an indirect construction of a Tay-
lor polynomial approximation, we derive an approximation for log(l —¢). Begin by
integrating (1.16) from O to ¢:

t d t t n4l
f X =f(1+x+x2+...+x")dx+/ x dx
o l=x Jo o 1—x

1 1 1 r oy n+l
'"log(l"t)=t+'2—12+—t3+...+_itn+l+/ x dx
0

3 n+ 1—x

1 1 ot
logl—t) = —(t 4+ => + - + ——"* —/ d 1
og(l =) (+2 et b 1—x " (119)

Thisis validfor0 < ¢ < 1. The remainder term can be simplified by applying the integral
mean value theorem (Theorem A.8 in Appendix A) to obtain

7 v

Ian.-l 1 t 1 tn+2
dx = n+l g :(

_/ol—x * 1—c/0x- =\0=¢)n+2

for some ¢ between 0 and ¢. This entire argument is also valid for -1 <t < 0.

Notation 1.2.5

1.2 THE ERROR IN TAYLOR'’S POLYNOMIAL 15
Summarizing this important case, we obtain

log(1 t)-: I S Ly (1.20)
(108 - S22 n+1 l—¢/)n+2 ’

with ¢; an unknown number between 0 and ¢; and this is valid for —1 <t<l.

When we speak of bounding the error in some quantity, say, bounding the error f(x) —
Pn(x), we mean to find a number M for which

[f(x) = pa@)| < M

When we say to bound the error on an interval & < x < B, we mean to find a number
M, for which

max |f(x) — pa(x)| < M,

a<xsp

Most examples are not as “nice” as Example 1.2.3, and we generally must use absolute
values in dealing with error. =

1.2.1 Infinite Series

By rearranging the terms in (1.16), we obtain the sum of a finite geometric series or
progression.

1— xn+1

I+x+x>+ . 4x" = ,ox#El (1.21)

1—x

Letting n — oo in (1.16) when |x| < 1, we obtain the infinite geometric series

1

[oe]
m=1+x+x2+x3+---=zxj, Ixl <1 (1.22)

j=0

In general, we say an infinite series

is convergent if the partial sums

Snzi(.‘j, HZO
j=0

16

Chapter 1 TAYLOR POLYNOMIALS

form a convergent sequence. This means that

S = lim S,
n—o0
exists, and we then write
o0
S=) ¢ (1.23)

For the infinite series in (1.22) with x # 1, the partial sums are given by (1.21)

1— xn+l

S, =
" 1—x

When |x| < 1, the sequence {S,} clearly has the limiting value 1/ (1 — x), and therefore
we say the infinite series is convergent to this value. When |x| > 1, the sequence {Sn}
clearly does not converge to any limiting value; we say the infinite geometric series
diverges in this case. What happens with |x| = 17

Assume f (x) has derivatives of any order at x = a. The infinite series

i Q‘___“X 9 (@)
J!

=0

is called the Taylor series expansion of the function f(x) about the point x = a. The
partial sum

Z (= f(])()
=

is simply the Taylor polynomial p,(x). The sequence {p (x)} has the limit f(x) if the
error tends to zero as n — o0

nl_iggo [f(x)— pa(x)]=0

In this case, we can write
-)
f&x) = Z = o (1.24)
= ! ' |

As examples, we can show that the error terms in (1. 13)—(1 17) and (1.20) tend to
zero as n — oo for suitable values of x. This yields the followmg Taylor expansions:

X 47 .
==, —00 < X < 00 (1.25)

=

j=0]'

1.2 THE ERROR IN TAYLOR’S POLYNOMIAL ' 17

. 0 (=1)f x2+t

smx:Z—-——_————, —00 < X < 00 (1.26)
. = @j+ 1!

j x4
(cosXx = Z ((2)])' —00 < X < 00 1.27)
(1+x)“=2(°f)xf, l<x<l (1.28)

=0 N

log(l—)=-» "=, -l<x<I (1.29)

In the case (1.28), the series may converge for other values of x, although that depends
on a.
Infinite series of the form

D aj(x—a) (1.30)

are called power series. Taylor’s formula is one way of obtaining such series, but they
also arise in other ways. Their convergence can be examined directly without recourse
to Taylor’s error formula. We give two important theorems used in examining their
convergence.

Theorem 1.2.6 Assume the series (1.30) converges for some value xo. Then the series (1.30) converges
also for all values of x satisfying |x — a| < |xp — al.

We outline the basis of a proof of this result in Problem 24.

Theorem 1.2.7 For the series (1.30), assume that the limit

An+1
an

R = lim

exists. Then for x satisfying |x — a| < 1/R, the series (1.30) converges to a limit S(x).
When R = 0, the series (1.30) converges for any real number x.

As an example, let us examine the convergence of the power series in formula
(1.27). Letting ¢ = x2, we obtain the series

o (=1)/ ¢
1.31
2 G (30

18

PROBLEMS

Chapter 1 TAYLOR POLYNOMIALS

Applying Theorem 1.2.7 with

Y
4=

we find R = 0. So the series (1.31) converges for any value of ¢, and then the series in
formula (1.27) converges for any value of x.

For more information on these two theorems and on the general area of infinite
series, consult any introductory-level calculus textbook.

1. Bound the error in using p3(x) to approximate e* on [—1, 1], with p3(x) and its
remainder given in (1.13). Compare it to the results given in Table 1.1.

2. Find the degree 2 Taylor polynomial for f(x) = e* sin(x), about the pointa = 0.
Bound the error in this approximation when —m/4 < x < m/4.

3. Find linear and quadratic Taylor polynomial approximations to f(x) = /x about
the point 2 = 8. Bound the error in each of your approximations on the interval
8 <x <8+ 48 with § > 0. Obtain an actual numerical bound on the interval
[8,8.1].

4. (a) Bound the error in the approximation
sin(x) =~ x

for —nm/4d <x <m/4

(b) Since this is a good ap roximation for small values of X, also consider the
g P
“percentage error”

sin(x) —x _ sin(x) — x
sin(x) ~ X

Bound the absolute value of the latter quantity for —§ < x < 4. Pick § to
make the absolute value of the percentage error less than 1%.

5. How large should the degree 2n — 1 be chosen in (1.14) to have
Isin(x) — p2n—1(x)] < 0.001

forall —w/2 < x < 7/2? Check your result by evaluating the resulting pz,.1(x)
atx = /2. !

6. Let p,(x) be the Taylor polynomial of degree n of the function f (x) = log (1 — x)

about a = 0. How large should n be chosen to have | f (x) — pn(x)| < 10~ for

1 1o -1 < lg
s<x=<s5?7For—1<x=<37?

1.2

10.

11.

12.

13.

14.

THE ERROR IN TAYLOR'S POLYNOMIAL 19

Write out p4(x) for (1.17) with o = % Bound the errorif 0 < x < %

How large should n be chosen in (1.13) to have

: e — pa@)| <107%, —1<x<1

Use Taylor polynomials with remainder term to evaluate the following limits:

. 1—rcos(x) . log(1 +x?%
@ lim——rp— ® lm——
© um“’g““"i“em

x—0 X

Hint: Use Taylor polynomials for the standard functions [e.g., cos(?), log(1 + 1),
and e'] to obtain polynomial approximations to the numerators of these fractions;
and then simplify the results.

Verify (1.16).
Hint: Multiply both sides by 1 — x and simplify.
Show

(A +1)y =Z<?>ri

j=0

Rewrite f(x) = 1+ x5 in the form
6 .
f& =) ajx—1)
j=0

Hint: Expand f(x) as a Taylor polynomial of degree 6 about x = 1. Using this,
what are the coefficients {a;}? What is the error f(x) — ps(x) in this case?

X

1
Bvaluate [= / ¢ dx within an accuracy of 1075,
0

X

Hint: Replace e* by a general Taylor polynomial approximation plus its remain-
der.

(a) Obtain a Taylor polynomial with remainder for f(f) = 1/(1 + t2), about
a=20.
Hint: Substitute x = —¢? into (1.16).

(b) Obtain a Taylor polynomial with remainder for g(x) = tan~! x. Do this by
integrating the result in (a) and using

*odt
tan~! (x) :/ 5
o 1412

20

Chapter 1 TAYLOR POLYNOMIALS

15.

16.

17.

18.

19.

X1 _ -t
Define f(x) = 1—e

0
2 for f(x). Give aformula for the approximation error, bounding it on the interval
0 < x <8 with § > 0. What is the error bound for § == 0.1?

*log(l+1¢
Define f(x) = / 2%_(_{1{_) dt.
0
(a) Give a Taylor polynomial approximation to f(x) about x = 0.

dt. Find a Taylor polynomial approximation of degree

(b) Bound the error in the degree 1 approximation for |x| < 1/2.

(¢) Find n so as to have a Taylor approximation with an error of at most 10~
on ["%! %]

Define f(x) = 1/22 —I-/ e~ dt.
0

(a) Using (1.13), give a Taylor polynomial approximation to f (x) about x = 0.
(b) Bound the error in the degree n approximation for x| < 1.

(¢) Find n so as to have a Taylor approximation with an error of at most 1077
on[—1,1].

1 [* dt

Define f(x) = — f R Find a Taylor polynomial approximation to f(x)
X Jo

with the degree of the approximation being degree 3 or larger. Give an error for-

mula for your approximation. Estimate f(0.1) and bound the error.

Hint: Begin with a Taylor series approximation for 1/ (1 — u).

Find the Taylor polynomial about x = 0 for

f(x):log(l——‘_——{), —l<x<1
1—x

Hint: Write
@) =log(l+1t)—1log(l—1)

., 1 1 2
f(t)'"1+r+1~z’“1—t2

Expand 1/(1 — ¢2) by applying (1.16) with x = t?. Obtain
t2"+2
1—1¢2’
)

FO =20+ 4+ -+ + —l<t<l.

Evaluate
FG) = fo oy

to obtain a Taylor polynomial approximation to; f(x), including an error term.

1.2 THE ERROR IN TAYLOR'S POLYNOMIAL 21

20.

21.

22,

23.

(a)

(b)

Using Problem 19, give a Taylor polynomial approximation to log(2) and
bound the error.

Hint: 'What is the needed value of x in order to use the result of Problem
19? :

Consider evaluating log(z) for % < z < 1. Use Problem 19 to give a way of
calculating log(z). Bound the error.

Consider evaluating 7 by using
7 =4tan~}(1)

Using the results of Problem 14, how many terms would be needed in the
Taylor approximation tan~! (x) & py,_;(x) to calculate 7 with an accuracy
of 107107 Is this a practical method of evaluating 7 ?

Suggest another computation of 7 by using the series for tan~!(x), giving
a more rapidly convergent method. (There is a large research literature on
finding series that converge rapidly to 7.)

Define i(x) = f(x)g(x). Let the Taylor polynomials of degree n for f(x) and
g(x) be given by

n n
Pn(-x) - Zaixi’ qn(x) = ijxj
i=0 j=0

Let r,(x) be obtained by first multiplying p,(x)g,(x) and then dropping all terms
of degree greater than .

(a)

()

For n =2, show that the Taylor polynomial of degree 2 for A(x) equals
I (x)

For general n > 1, show that the Taylor polynomial of degree n for (x)
equals 7, (x).

Hint: Forrepeated differentiation of the product f(x)g(x), use the Leibniz
Sformula:
k

d A
s =3 (§) 10wgt-re

j=0

Recall the definition of convergence for the infinite series

[}
S=ch
Jj=0

of (1.23). Show that convergence implies that

limcj=0

j—o0

Chapter 1 TAYLOR POLYNOMIALS

24. Consider the proof of Theorem 1.2.6. Since the series

o
> aj(xo—a)
j=0
is assumed to converge for x = xp, the result of Problem 23 implies that
_h'm aj(xo—a)j =0
j—oo
Consequently, there is a constant ¢ > 0 for which
laj o —a)|<e, j=z0
Introduce the partial sums

S,,=Zaj(x——a)j, n=>0

j=0
and define

X —a

=

Xp—a

and r < 1 is an assumption of the theorem.
(a) Show that the partial sums {S,} satisfy

rn—H
|Sm - Snl <c

—_)

—-r

alm>n>0
This implies that

lim lSm "'Snl =0

n,m-—»od

and therefore the sequence {S,} forms what is called a Cauchy sequence.
From a theorem of higher analysis, {S, } being a Cauchy sequence is sufficient
to conclude that

S = lim §,

n—>o0

exists, thus showing for the infinite series of (1.30) that
b S
S=Zaj(x—a)’, Jx —al.< |xp—al
it

is convergent.

1.3 POLYNOMIAL EVALUATION

(b) Show that the error in the partial sums satisfies

n+1

cr
15 = Sal = 7=

This is often used to obtain error bounds for the approximation

S =~ S,

in which the infinite series S is approximated by its partial sum Sy.

1.3. POLYNOMIAL EVALUATION

23

The evaluation of a polynomial would appear to be a straightforward task. It is not, and

to illustrate the possibilities, we consider the evaluation of

p(x) =3 —4x — 5x% — 6x° + Tx* — 8x°

From a programmer’s perspective, the simplest method of evaluation is to compute each
term independently of the remaining terms. More precisely, the term cx* is computed

in a program by

cxxk or cxxxxk

depending on which computer language is being used. This requires k multiplications
with most compilers, although more “intelligent” compilers may produce amore efficient

code. With this approach, there will be
142+ 3+4+5 = 15 multiplications

in the evaluation of p(x).

The second method of evaluation is more efficient. We compute each power of x

by multiplying x with the preceding power of x, as

2= x(xz), xt = x(x3), X = x(x4)

Thus, each term cx* takes two multiplications for k > 1. The resulting evaluation of

p(x) uses

1+ 2+ 2+ 2+ 2 = 9 multiplications

(1.32)

a considerable savings over the first method, especially with higher-degree polynomials.
The third method is called nested multiplication. With it, we write and evaluate

p(x) in the form

p(x) =3+ x(—4+x(=5+ x(—6 + x(7 — 8x))))

24

Example 1.3.1

Chapter 1 TAYLOR POLYNOMIALS

The number of multiplications is only 5, an additional saving over the second method.
The nested multiplication method is the preferred evaluation procedure; and its advantage
increases as the degree of the polynomial becomes larger.

Consider the general polynomial of degree n

p(x) =ap+aix 4+ +a,x", a, #0 (1.33)
If we use the second method, with the powers of x being computed as in (1.32), then

the number of multiplications in the evaluation of p(x) equals 2n — 1. For the nested
multiplication method, write and evaluate p(x) in the form

p(x) =ap+x(a1 +x(a+ - +x(@-1+ayx)...) (1.34)
This uses only n multiplications, a savings of about 50% over the second method. All

methods use » additions. The use of nested multiplication is implemented in the MATLAB
program given at the end of Section 1.1.

Evaluate the Taylor polynomial ps(x) for log(x) about a = 1. A general formula is
given in (1.19), with ¢ replaced by — (x — 1). From it,

ps)=Gx-D -t -1 +iax - -t -D*+3iGx-1)
Let w = x — 1 and write
ps) =w (14w (-3 +w(3+w(—§+iw)))

In a computer program, you would store the coefficients in decimal form, to an accuracy
consistent with the arithmetic of the machine. =

We give a more formal algorithm for (1.34) because of its connection to some other
topics. Suppose we want to evaluate p(x) at some number z. Define a sequence of
coefficients b; as follows:

by, = a,

byt = ap-1+2zby

bn_z = ap+ Zbp (135)
by = ag+zby) }

Then

p(z) = by . (1.36)

1.3 POLYNOMIAL EVALUATION 25

The coefficients b; are the successive computations within a matching pair of parentheses

in (1.34). b,_, is the innermost computation, and by is the final one. When looked at

in this manner, the nested multiplication method is called Horner s method; it is closely

related to synthetic division, which is discussed in many elementary algebra texts.
Using the coefficients of (1.35), define the polynomial

g(x) = by + byx +b3x® +- -« 4+ byx"! (1.37)
It can be shown that
p(x) = by + (x — 2)q(x) (1.38)

Thus, g(x) is the quotient from dividing p(x) by x — z, and by is the remainder. The
proof of (1.38) is left as Problem 7 for the reader. This resuit is used in connection with
polynomial rootfinding methods to reduce the degree of a polynomial when a root z has
been found, since then by = 0 and p(x) = (x — z)g(x).

1.3.1 An Example Program

We conclude this section by giving a MATLAB function for evaluating Taylor polynomial
approximations for the function

Sintx:—l—/‘. Sn® 4 s #0 (1.39)
X Jo t

with Sint(0) = 1. This function is called a sine integral. A graph of Sint x is given in
Figure 1.5for -6 < x < 6.

We begin by deriving a particular Taylor polynomial approximation on [—1, 1] to
Sint x, requiring that its maximum error on [—1, 1] be bounded by 5 x 1079, a fairly
arbitrary choice. Begin by using the standard series for sin(z), given by (1.14) with x
replaced by . First consider the case x > 0. Dividing by ¢ and integrating over [0, x]
we get

1 x t2 t4 . t2n——2
Sintx== [[1—c 4+ gy g R,
e x/(;[TR + =D (2;1-—1)!] + Ron-a(x)
2 =2
—1— Iy LR 1.40
33 555 e G iy T R ® 140)

1 x i t2n
Rop-a(x) = ;./o (-1 m cos(c,) dt

The point ¢; is between 0 and ¢. Since [cos(c;)] < 1,

2n 2n

I x

26

Chapter 1 TAYLOR POLYNOMIALS

Figure 1.5. 'The sine integral Sint(x) of {1.39)

It is easy to see that this bound is also valid for x < 0. As required, choose the degree
so that

[Ran2(x)| <5 % 107° (1.42)
From (1.41),

1
Ry <
max 1R2) = G i+ 1)
We choose 7 so that this upper bound is itself bounded by 5 x 10~°. This is true if
27+ 1> 11, ie.,n > 5, and then (1.42) is satisfied. The polynomial we use is

x2 x*t x5 X8
=l o - —-1<x<1 1.43
P&) 3 557 o =% (143)

and as an approximation to Sint x on [—1, 1], its error satisfies (1.42).

The above polynomial p(x) is an even function, meaning that p(—x) = p(x) for
all values of x; and even polynomials contain only even powers of x (cf. Problem 3).
Then we can evaluate p(x) more efficiently by evaluating the degree 4 polynomial g{(u)
obtained by using # = x? in p(x)

}
W=1-—24+ u? L.
U)=1-——+ —— —
g 18 600 35,280 3,265,920

4

(1.44)

where the denominators of (1.43) have been calculated explicitly.

1.3 POLYNOMIAL EVALUATION 27

MATLAB PROGRAM: Taylor polynomials for Sintx. The Taylor polynomials
Pr(x) about O for -Sintx are even polynomials. Proceeding in analogy with the re-
duction of (1.43) to (1.44), we can reduce by approximately one-half the number of
multiplications needed to evaluate it. We give here a MATLAB program plot_sint to
evaluate Taylor approximations of Sint x. The Taylor polynomials are of four different
degrees n (given here as 2, 4, 6, and 8), and the evaluation is on a user-specified interval
[0, 1.

% TITLE: Plot Taylor polynomials for the ’’sine integral’’
% about x = 0.

%

% This plots several Taylor polynomials and their errors

% for increasing degrees. The particular function being

/% approximated is Sint(x) on [0,b], with x = O the point of
% expansion for creating the Taylor polynomials. We plot
% the Taylor polynomials for several degrees, which can

% be altered by the user. Note that the function being

% plotted is symmetric about x=0.

% The Taylor polynomials in this case contain only terms
% of even degree. Such polynomials are called ’’ even
% polynomials,’’ and they are symmetric about x=0.

% TO THE STUDENT: run this program for various input values
h of 77 b.’? Also, change the values given in the vector
% ?’ degree’’ given below, to experiment with different

% degrees of Taylor polynomial approximations.

% Initialize

b = input(’Give the number b defining the interval [0,b] ’);
b/200;

x = 0:h:b;

max_degree = 20;

=2
[

% Produce the Taylor coefficients for the ’’sine integral’’
% function ’’Sint.’’
¢ = sint_tay(max_degree);

% Specify the four values of degree to be considered. They must
% all be even, and they must be less than or equal to max_degree.
degree = [2, 4, 6, 8];
if max(degree) > max_degree
fprintf(’Some value of degree is greater than max_degree =...
%2.0f\n’ ,max_degree)
return

Chapter 1 TAYLOR POLYNOMIALS

end

% Initialize the array to contain the polynomial values. Row #i
% is to contain the values for the polynomial of degree=degree(i).
p = zeros(4,length(x));

% Calculate the Taylor polynomials
for i = 1:4

p(i,:) = poly_even(x,c,degree(i));
end

% Initialize for plotting the Taylor polynomials
hold off

clf

axis([0,b,0,11)

hold on

% Plot the Taylor polynomials

plot(x,p(1,:),%,p(2,:),7:7,%,p(3,:),’ - ,%x,p(4,:),’~.”)

plot([0,b], [0,01)

plot ([0 0],[0 11)

title(’Taylor approximations of Sint(x)’)

text (1.025%b,0,°x’)

text(0,1.03,°y’)

legend(strcat(’degree = ’,int2str(degree(1))),...
strcat (degree = ’,int2str(degree(2))),...
strcat(’degree = ’,int2str(degree(3))),...
strcat(’degree = ’,int2str(degree(4))))

The program uses the following program, named sint_tay, to evaluate the Taylor
coefficients of (1.40) for Sint x.

function coeff=sint_tay(n)

)

% function coeff = sint_tay(n)

)

% Evaluate the coefficients of the Taylor approximation

% of degree n which approximates the ’’ sine integral.’’
% The input variable n must be an even integer. The

% output vector coeff will have length m+1 where m=n/2.

% This is because only the even ordered coefficients are
% nonzero, and this must be considered in evaluating the
% associated Taylor polynomial. ’

m = double(int32(n/2));

1.3 POLYNOMIAL EVALUATION 29

if n 7= 2%m

disp(’Error in poly_even(x,coeff,n):’)

disp(’The parameter n must be an even integer.’)
end

coeff = ones(m+1,1);
sign = 1;
fact = 1;

for i = 2:m+1
sign = -sign;
d = 2%i-1;
. fact = fact*x(d-1)#*d;
coeff(i) = sign/(fact*d);
end

The program plot_sint also uses the following program, named poly_even, to evalu-
ate the even polynomials approximating Sint x. Itis a variation on the program polyeval
discussed earlier in this section, using the simplification illustrated in (1.44).

function value = poly_even(x,coeff,n);

%

% function value = poly_even(x,coeff,n)

o,

%

% Evaluate an ’’even’’ Taylor polymomial at the points given
% in x, with n the degree of the polynomial. The coefficients
are to be given in coeff. It is assumed that the numbers in
coeff are the nonzero coefficients of the even-ordered
terms in the polynomial. The input parameter n must be an
even integer.

2 e e

m = double(int32(n/2));
if n 7= 2*m

‘disp(’Error in poly_even(x,coeff,n):’)

disp(’The parameter n must be an even integer.’)
end

XSq = X.*¥X;
value = coeff (m+l)+*ones(size(x));

for i = m:-1:1
value = coeff(i) + xsq.*value;
end

30

PROBLEMS

Chapter 1 TAYLOR POLYNOMIALS

1.

(a) TImplement the function plot_sint on your computer, and use it to compare
different degrees of approximation on the intervals [0, 11, [0, 2], [0, 3], and
[0, 4]. Comment as best as you can on the accuracy of the approximations.

(b) Modify the program by allowing for larger degrees of approximation, for
example, in the program use '

degree = [4, 8, 12, 16]
Repeat part (a) and also consider longer intervals [0, b].

Repeat the process of creating a polynomial approximation to Sint x with an error
tolerance of 10~2, but now use the interval ~2 < x < 2.

(a) Let the polynomial p(x) be an even function, meaning that p(=x) = p(x)
for all x of interest. Show this implies that the coefficients are zero for all
terms of odd degree.

(b) Let the polynomial p(x) be an odd function, meaning that p(—x) = —p(x)
for all x of interest. Show this implies that the coefficients are zero for all
terms of even degree.

() Let p(x)=ap+ax+ apx? + asx>. Give conditions on the coefficients
{ao, a1, a2, as} so that p(x) is even. Repeat with p(x) being odd.

In analogy with Sint x, prepare a MATLAB program for evaluating

1 [f1— t
Cintx:-/ -———C-;S—th, —-l<x<1
X Jo t

Use the same error tolerance as in (1.42) for Sintx. For comparison purposes,
Cint(1) = 0.486385376235. Prepare a graph of Cintx on [~1, 1].

The error function

2 [_p
erfx = — e "dt
77 Jo
is useful in the theory of probability. Find its Taylor polynomial so that the error
is bounded by 10~° for |x| < b for a given b > 0. Show how to evaluate the
Taylor polynomial efficiently. Draw a graph of the polynomial on [—b, b]. Use
the values b =1, 3, 5.

Suppose p(x) = 4x” — 3x% — 2x + x* +x3 — 1 is divided by x — 1. What is
the remainder? What is the quotient?

Show (1.38). Compute the quantity bp + (x — z)q(x)) by substituting (1.37), and
collect together common powers of x. Then simplify those coefficients by using
(1.35). It may be easier to initially restrict the proof to a low degree, say, n = 3.

Show p'(z) = gq(2) in (1.38).

1.3

10.

11.

POLYNOMIAL EVALUATION 31

.Evaluate

x3 x6 x9 x12 xlS
e ey

(R T T LTI T

as efficiently as possible. How many multiplications are necessary? Assume all
coefficients have been computed and stored for later use.

Show how to evaluate the function

flx) =2e% — ¥ £ 565 +1

efficiently.
Hint: Consider letting z = &*.

For f(x) = €%, find a Taylor approximation that is in error by at most 10~7 on
[—1, 1]. Using this approximation, write a function program to evaluate ¢*. Com-
pare it to the standard value of e* obtained from the MATLAB function exp (x);

calculate the difference between your approximation and exp(x) at 21 evenly
spaced points in [—1, 1].

ERROR AND COMPUTER
ARITHMETIC

Much of numerical analysis is concerned with how to solve a problem numerically, that is,
how to develop a sequence of numerical calculations that will give a satisfactory answer.
Part of this process is the consideration of the errors that arise in these calculations,
whether from errors in arithmetic operations or from some other source. Throughout this
book, as we look at the numerical solution of various problems, we will simultaneously
consider the errors involved in whatever computational procedure is being used. In this
chapter, we give a few general results on error.

We begin in Section 2.1 by considering the representation of numbers within
present-day computers and some consequences of it. Section 2.2 contains basic def-
initions regarding the idea of error and some important examples of it, and Section 2.3
discusses the propagation of error in arithmetic calculations. Section 2.4 examines errors
involved in some summation procedures and illustrates the importance of the definition
of basic machine arithmetic operations in numerical calculations.

33

34

2.1.

Chapter 2 ERROR AND COMPUTER ARITHMETIC

FLOATING-POINT NUMBERS

Numbers must be stored in computers and arithmetic operations must be performed on
these numbers. Most computers have two ways of storing numbers, in integer format
and in floating-point format. The integer format is relatively straightforward, and we
will not consider it here. The floating-point format is a more general format allowing
storage of numbers that are not integers, and in this section, we define floating-point
format. Most computers use the binary number system, and an introductory discussion
of it is given in Appendix E. We will discuss the most popular floating-point format
being used currently for binary computers, but we begin with floating-point format for
decimal numbers.

To simplify the explanation of the floating-point representation of a number, let us
first consider a nonzero number x written in the decimal system. It can be written in a
unique way as

x=0-x-10° @21

where o = -1 or —1, e is an integer, and 1 < ¥ < 10. These three quantities are called
the sign, exponent, and significand, respectively, of the representation (2.1). As an
example,

124.62 = (1.2462) - 10

with the sign o = +1, the exponent e = 2, and the significand ¥ = 1.2462. The format
of (2.1) is often called scientific notation in high school texts on mathematics and science. .
Note that the significand is also called the mantissa in many texts.

The decimal floating-point representation of a number x is basically that given in
(2.1), with limitations on the number of digits in X and on the size of e. For example,
suppose we limit the number of digits in X to four and the size of e to between —99
and +99. We say that a computer with such a representation has a four-digit decimal
floating-point arithmetic. As a corollary to the limitation on the length of X, we cannot
guarantee to store accurately more than the first four digits of a number, and even the
fourth digit may need to be changed by rounding (which later we define more precisely).
Some popular hand calculators use ten-digit decimal floating-point arithmetic. Because
decimal arithmetic is more intuitive for most people, we occasionally illustrate ideas
using decimal floating-point arithmetic rather than binary floating-point arithmetic.

Now consider a number x written in binary format. In analogy with (2.1), we can
write

x=0-%-2°) 2.2)
where o = +1 or —1, e is an integer, and X is a binary fraction satisfying

(1) =% < (10)y . (2.3)

2.1 FLOATING-POINT NUMBERS 35

Table 2.1. Storage of IEEE single precision floating-point format

by babs...bg biobyy ...b3na
[[y [Se——
ay E x

In decimal, 1 < X < 2. For example, if x = (11011.0111),, then 0 = +1, e =4 =
(100)2, and ¥ = (1.10110111),. Note that for x # 0, the digit to the left of the binary
point in X is guaranteed to be 1.

The floating-point representation of a binary number x consists of (2.2) with a
restriction on the number of binary digits in X and on the size of e. The allowable number
of binary digits in X is called the precision of the binary floating-point representation of
x. The IEEE floating-point arithmetic standard is the format for floating-point numbers
used in almost all present-day computers. For example, Intel processors all use this
standard. With this standard, the IEEE single precision floating-point representation of
x has a precision of 24 binary digits and the exponent e is limited by —126 < e < 127.

x=0-(laay...a3) 2° 2.4)
In binary,
— (1111110), < e < (1111111),

. The IEEE double precision floating-point representation of x has a precision of 53
binary digits and the exponent e is limited by —1022 < e < 1023.

x=0-(laiay...as) - -2° 2.5)

Single precision floating-point format uses four bytes (32 bits), and the storage
scheme for it is sketched in Table 2.1. The sign o is stored in bit b; (b; = 0 foro = +1
andb; = lforo = —1). Define E = ¢ + 127. Rather than e, we store the positive binary
integer E in bits b, through bg. The bits aja; . . . ax; of X are stored in bits by through
b3,. The leading binary digit 1 in X is not stored in the floating-point representation when
the number x is stored in memory; but the leading 1 is inserted into X when a floating-
point number x is brought out of memory and into an arithmetic register for further use
(or something equivalent is done). This leads to the need for a special representation
of the number x = 0; it is stored as E = 0 with o = 0 and byby; ... b3y = (00...0),.
Alist of all possible single precision floating-point numbers is given in Table 2.2. This
and Table 2.4 are adapted from the excellent text of Overton [27, Tables 4.1, 4.2].

The double precision format uses eight bytes (64 bits), and how it is stored is
sketched in Table 2.3. The sign o is stored in bit b; (b; =0 foro =+1 and b; = 1
for 0 = —1). Define E = e -+ 1023. Rather than e, we store the positive binary integer
E in bits b, through by5. The bits aja, . .. asy of ¥ are stored in bits b3 through bgs.
The leading binary digit 1 in X is not stored in the floating-point representation when
the number x is stored in memory; but the leading 1 is inserted into ¥ when a floating-
point number x is brought out of memory and into an arithmetic register for further use.

36

Example 2.1.1

Chapter 2 ERROR AND COMPUTER ARITHMETIC

Table 2.2. I1EEE single precision format

l + l Ccy...c8 ayaz...axn

E={(c1...c8)2 x

(00000000), = (0)5 +(0.a1a;...a23)y - 27126

(00000001), = (1)1o +.ayas...az3), - 27126
(00000010); = (2)19 +(Layas...an), - 27
(01111111), = (1279 +(layas...an) - 2°
(10000000), = (128)49 +(lajaz...an), -2}
(11111101), = (253)10 +(Lajas ...an), - 21%
(11111110), = (254)19 +(lajaz...axs), - 2%
(11111111)5 = (255)9 +ooif @) = - -+ = a3 = 0; NaN otherwise

Table 2.3. Storage of IEEE double precision floating-point format

by babsz...by2 bisbis ... bss
— -
4 E X

This leads to the need for a special representation of the number x == 0; it is stored as
E =0witho = O0and b13b14 . . . bgs = (00. .. 0),. Alist of all possible double precision
floating-point numbers is given in Table 2.4.

In addition, there are also representations for co and —co, a computer version of
Zinfinity. Thus, % = 00 in this floating-point arithmetic. There is also a representation
for NaN, meaning “not a number.” Floating-point operations such as % lead to an answer
of NaN, rather than causing the program to stop abruptly with some possibly cryptic error
message. The program can then test for NaN and respond to its presence as needed.
There are additional nuances to the IEEE standard. When the leading 1 is missing in (2.4)
and (2.5), corresponding to E == 0 in Tables 2.2 and 2.4, we refer to the floating-point
format as unnormalized. It carries less precision in the significand than the normalized
format of (2.4) and (2.5), and we ignore it for the most part in this text.

MATLAB can be used to generate the entries in Table 2.4. Execute the command
format hex

This will cause all subsequent numerical output to the screen to be given in hexadecimal
format (base 16). For example, listing the number 7 results in an output of

2.1 FLOATING-POINT NUMBERS 37

Table 2.4. TIEEE double precision format

l "i I cr...cnn aax...asy
{

E=(Cl...{,‘u)2 X
(00000000000), = (0);g +(0.a1az...as5), - 27102
(00000000001), = (1)0 +(lajaz...as), - 271022
(00000000010), = (2),9 +(aaz...as), - 27102

(01111111111), = (1023),g +(lajaz...as), - 20

(10000000000), = (1024) 4 +(laia...as), 2!

(11111111101); = (2045)0 +(lajaz...as), - 2102

(11111111110, = (2046) 0 +(lajaz...as), - 21023

(11111111111), = (2047)10 +ooifa; = - = as; = 0; NaN otherwise

Table 2.5. Conversion of hexadecimal to binary

Hex digit Binary equivalent
0 0000

1 0001

2 0010

9 1001

a 1010

f 1111 -

401c000000000000 (2.6)
The 16 hexadecimal digits are {0, 1,2, 3, 4,5,6,7, 8,9, a,b,c,d,e, f}. To obtain the
binary representation, convert each hexadecimal digit to a four-digit binary number using
Table 2.5. Replace each hexadecimal digit with its binary equivalent. For the above
number, we obtain the binary expansion

010000000001 11000000 ... 0000 2.7

for the number 7 in IEEE double precision floating-point format.

38

Chapter 2 ERROR AND COMPUTER ARITHMETIC

2.1.1 Accuracy of Floating-Point Representation

Consider how accurately a number can be stored in the floating-point representation.
This is measured in various ways, with the machine epsilon being the most popular. The
machine epsilon for any particular floating-point format is the difference between 1 and
the next larger number that can be stored in that format. In single precision IEEE format,
the next larger binary number is

1.00000000000000000000001 2.8)

with the final binary digit 1 in position 23 to the right of the binary point. Thus, the
machine epsilon in single precision IEEE format is 272 As an example, it follows that
the number 1 + 224 cannot be stored exactly in IEEE single precision format. From

272 = 1.19 x 1077 2.9)

we say that IEEE single precision format can be used to store approximately 7 decimal
digits of a number x when it is written in decimal format. In a similar fashion, the
machine epsilon in double precision IEEE format is 2752 = 2.22 x 10716; IEEE double
precision format can be used to store approximately 16 decimal digits of a number x. In
MATLAB, the machine epsilon is available as the constant named eps.

As another way to measure the accuracy of a floating-point format, we look for
the largest integer M having the property that any integer x satisfying 0 < x < Mcan
be stored or represented exactly in floating-point form. Since x is an integer, we will
have to convert it to a binary number ¥ with a positive exponent e in (2.2). If n is the
number of binary digits in the significand, then it is fairly easy to convince oneself that
all integers less than or equal to

(1.11...1), - 2!

can be stored exactly, where this significand contains » binary digits, all 1. This is the

integer composed of n consecutive 1’s; and using (1.21), it equals 2" — 1. In addition,

2" = (1.0...0), - 2" also stores exactly. Butthere are notenough digits in the significand

to store 2" + 1, as this would require n + 1 binary digits in the significand. With ann’
digit binary floating-point representation,

M=2" (2.10)

Any positive integer < M can be represented exactly in this floating-point representation.
In the IEEE single precision format,
)

M =2 = 16777216

and all 7-digit decimal integers will store exactly. In IEEE double precision format, the
number

2.1 FLOATING-POINT NUMBERS) 39

M=23=90x 10"

and tt}us all 15-digit decimal integers and most 16 digit ones will store exactly.

2.1.2 Rounding and Chopping

Let the significand in the floating-point representation contain » binary digits. If the
number x in (2.2) has a significand X that requires more than n binary bits, then it must
be shortened when x is stored in the computer. Currently, this is usually done in one of
two ways, depending on the computer or the options selected within the IEEE standard
for floating-point arithmetic. The simplest method is to simply truncate or chopxton
binary digits, ignoring the remaining digits. The second method is to round % to n digits,
based on the size of the part of X following digit n. More precisely, if digitn + 1 is zero,
chop x to n digits; otherwise, chop X to n digits and add 1 to the last digit of the result.
Regardless of whether chopping or rounding is being used, we will denote the machine
floating-point version of a number x by fi(x).
It can be shown that the number fl(x) can be written in the form

fix)=x-(1+¢) (2.11)

with € a small number, dependent on x. Since ¢ is small, this says that fi(x) is a slight
perturbation of x. If chopping is used,

27"l <e <0 (2.12)
and if rounding is used,
2" <e<2™ (2.13)

The most important characteristics of chopping are: (1) The worst possible error is twice
as large as when rounding is used; and (2) the sign of the error x — fl(x) is the same as
the sign x. This last characteristic is the worst of the two. In many calculations it will
lead to no possibility of cancellation of errors; examples are given later in Section 2.4.
With rounding, the worst possible error is only one-half as large as for chopping. More
important, the error x — fi(x) is negative for half of the cases and positive for the other
half. This leads to much better error propagation behavior in calculations involving
many arithmetic operations.

For single precision IEEE floating-point arithmetic, several variants of rounding and
chopping are available. The method of chopping described above is called “rounding
towards zero,” and with it we have

2B <e<0 2.14)

40

Chapter 2 ERROR AND COMPUTER ARITHMETIC

Most users of the IEEE standard use as a default the rounding described preceding (2.11).
There are n = 24 digits in the significand; and with standard rounding,

2 M <e<2™ (2.15)
The corresponding results for double precision IEEE floating-point arithmetic are

22 <e<0 chopping
; . (2.16)
2B < e <23 rounding

9.1.3 Consequences for Programming of Floating-Point Arithmetic

Numbers that have finite decimal expansions may have infinite binary expansions. For
example,

(0.1),5 = (0.000110011001100110011...),

and therefore (0.1);q cannot be represented exactly in binary floating-point arithmetic.
Consider the following MATLAB code on a binary machine, illustrating a possible prob-
lem:

x = 0.
while “= 1.0
x=x+0.1
disp([x,sqrt(x)1)
end

I H O

This code forms an infinite loop. Clearly, the programmer intended it to stop when
x = 1.0; but because the decimal number 0.1 is not represented exactly in the computer,
the number 1.0 is never attained exactly. A different kind of looping test should be used,
one not as sensitive to rounding or chopping errors.

In languages with both single precision and double precision, such as Fortran and
C, it is important to specify double precision constants correctly. As an example in
Fortran, consider the statement

PI =3.14159265358979

and suppose that P has been declared as a double precision variable. Even though the
number on the right side is correct to double precision accuracy, it will not compile as
such with many compilers. Rather, the number on the right side will be rounded as a
single precision constant during the compilation phase; and then at run time, it will have
zeros appended to extend it to double precision. Instead, one should write

PI =3.14159265358979D0

PROBLEMS

2.1 FLOATING-POINT NUMBERS 41

which is a double precision constant. As a related example, consider

PI = 4.0*ATAN(1.0)

again with PI declared as a double precision variable. When executed, this statement
will create an approximation to = with single precision accuracy, and then it will be
extended to a double precision constant by appending zeros. To obtain a value for PI
with double precision accuracy as in regard to the value of 7, use

PI = 4.0D0*ATAN(1.0D0)
As another example, consider
H=0.1

with H having been declared double precision. This will result in a value for H with
only single precision accuracy to the decimal number 0.1. Instead, use

H=0.1D0

In MATLAB, all the computations are done automatically in double precision. We
do not need to pay attention to the format of specified double precision constants. In
other words, with MATLAB we can focus more on the computational procedures.

1. Using MATLAB and proceeding as in the example of (2.6)(2.7), find the binary
double precision IEEE floating-point expressions for the following numbers:
(@ 8 M) 12 (© 15
@ 05 (e) 125

2. Some microcomputers in the past used a binary floating-point format with 8 bits
for the exponent e and 1 bit for the sign o. The significand ¥ contained 31 bits, 1 <
x < 2, with no hiding of the leading bit 1. The arithmetic also used rounding. To
determine the accuracy of the representation, find the machine epsilon [described
preceding (2.8)] and the number M of (2.10). Also find bounds for the number ¢
of (2.11).

3. Write a program in the language of your choice to implement the following algo-
rithm (given in MATLAB). Run it on one or more computers to which you have
access. Comment on your results. ,

power = 1.0;
b =1.0;
while b "= 0.0

power = power/2;

42 Chapter 2 ERROR AND COMPUTER ARITHMETIC

a = 1.0 + power;

b=a-1.0;

disp([power,a,bl)
end

disp([’Unit round = ’,num2str(2+*power)])

4. Predict the output of the following section of code if it is run on a binary computer
that uses chopping. More precisely, estimate the number of times the programmer
probably intended for this loop to be executed; and state whether this intended
behavior is what actually occurs. Would the outcome be any different if the
statement “X = X 4 H” was replaced by “X = I x H”?

I=0

X =0.0

H=20.1

WHILE X < 1.0
I=I+1
X=X+H
disp([I,X1)

end
5. The following MATLAB program produced the given output. Explain the results.

x=20.0

while x < 1.0
x=x+ 0.1;
disp([x, sqrt(x)])

end

x 0.1 0.2 - 03 04 0.5 0.6
Jx 03162 04472 05477 06325 07071 0.7746

X 0.7 0.8 0.9 1.0 1.1
J* 08367 0.8944 09487 1.0000 1.0488

6. Letx > Osatisfy (2.2). Consider a computer using a positive binary floating-point
representation with » bits of precision in the significand [e.g., n = 24 in (2.2)].
Assume that chopping (rounding toward zero) is used in going from a number x
outside the computer to its floating-point approximation fl(x) inside the computer.

2.2 ERRORS: DEFINITIONS, SOURCES, AND EXAMPLES 43

(a) Show that
0<x—flix) < ge—n+l
(b) . Show that x > 2¢, and use this to show

x —fl(x)
X

< p—ntl

(¢) Let

x —fl(x) _
— =

and then solve for fl(x). What are the bounds on €? (This result extends to
x < 0, with the assumption of x > 0 being used to simplify the algebra.)

7. Letx > Osatisfy (2.2). Consider a computer using a positive binary floating-point
representation with n bits of precision in the significand [e.g., n = 24 in (2.2)].
Assume that rounding is used in going from a number x outside the computer to
its floating-point approximation fl(x) inside the computer.

(a).. Show that
26" < x —fl(x) <2°7"

(b) Show that x > 2¢, and use this to show

k=8 _
o =<
(¢) Let
T ox —1fl(x) _
— =

and then solve for fl(x). What are the bounds on €? (This result extends to
x < 0, with the assumption of x > 0 being used to simplify the algebra.)

2.2. ERRORS: DEFINITIONS, SOURCES, AND EXAMPLES

The error in a computed quantity is defined as
Error = true value — approximate value

The quantity thus defined is also called the absolute error. The relative error is a measure
of the error in relation to the size of the true value being sought:

44

Chapter 2 ERROR AND COMPUTER ARITHMETIC

€rror

Relative error = ———-—
true value

This gives the size of the error in proportion to the true value being approximated. To
simplify the notation when working with these quantities, we will usually denote the
true and approximate values of a quantity x by x7 and x4, respectively. Then we write

Error(xs) = xr — x4

Rel(xy) = 2L X4

As an illustration, consider the well-known approximation

n;22
7

Here x7 = m = 3.14159265 ... and x4 = 22/7 = 3.1428571 ...

7

Rel (272> = f’—:%)‘-@ = —0.000402

Error (27—2—) = - g = —0.00126

Another example of error measurement is given by the Taylor remainder (1.11).

The notion of the relative error is a more intrinsic error measure. For instance,

suppose the exact distance between two cities is a’}l) = 100 km and the measured distance

is d{’ = 99km. Then

Error (4) = df - af = 1km

Rel (dj,”) = En—o;g‘f@ =001 =1%
T

Now suppose the exact distance between a certain two stores is d}z) =2km and it is
estimated to be 4 = 1km. Then

Error (d}f’) =d? - d? = 1km

Rel (dff)) = Er—();g@ =0.5=50%
T

In both cases the errors are equal. But obviously dﬁl) is a much more accurate estimate

of d}l) than is df) as an estimate of d;z) , and this is reflected in the sizes of the two
relative errors.

Example 2.2.1

2.2 ERRORS: DEFINITIONS, SOURCES, AND EXAMPLES 45

An idea related to relative error is that of significant digits. For a number x4, the
number of its leading digits that are correct relative to the corresponding digits in the true
value xr is called the number of significant digits in x4. For a more precise definition,
and assuming the numbers are written in decimal form, calculate the magnitude of the
error, |xy — x4|. If this error is less than or equal to five units in the (m + 1)1 digit
of xr, counting rightward from the first nonzero digit, then we say x4 has, at least, m
significant digits of accuracy relative to x7.

2
5

(b) x4 = 23.496 has four digits of accuracy relative to x; = 23.494.

(a) x4 = 0.222 has three digits of accuracy relative to x7 =

(¢) xa = 0.02138 has just two digits of accuracy relative to x7 = 0.02144.

(d x4= % has three digits of accuracy relative to xr = 7. =

It can be shown that if

T4 5. 9071 @17
Xr

then x4 has m significant digits with respect to x7. Most people find it easier to measure
relative error than significant digits; and in some textbooks, satisfaction of (2.17) is used
as the definition of x4 having m significant digits of accuracy.

2.2.1 Sources of Error

Imagine solving a scientific-mathematical problem, and suppose this involves a com-
putational procedure. Errors will usually be involved in this process, often of several
different kinds. We sometimes think of errors as divided into “original errors” and “con-
sequences of errors.” We will give a rough classification of the kinds of original errors
that might occur.

(E1) Modeling Errors = Mathematical equations are used to represent physical
reality, a process that is called mathematical modeling. This modeling introduces error
into the description of the real-world problem that you are trying to solve.

For example, the simplest model for population growth is given by

N@) = Nye* (2.18)

where N(¢) equals the population at time ¢, and Ny and k are positive constants. For
some stages of growth of a population, when it has unlimited resources, this can be
an accurate model. But more often, it will overestimate the actual population for large
t. For example, it accurately models the growth of U.S. population over the period of
1790 < r < 1860, withk = 0.02975 and Ny = 3,929,000 x ¢~17°%; but it considerably
overestimates the actual population in 1870.

Chapter 2 ERROR AND COMPUTER ARITHMETIC

Another example arises in studying the spread of rubella measles. We have the
following model for the spread of the infection in a population, subject to certain as-
sumptions:

diz(;) = a5
fZ—:gz'=(1S(l‘)i(l‘)~—-bi(t)
art) .

= =bi(t)

In this, s(¢), i (), and r(¢) refer, respectively, to the proportions of a total population at
time ¢ that are susceptible, infectious, and removed (from the susceptible and infectious
pool of people). All variables are functions of time ¢. The constants can be taken as

6.8 1

“=1 PE
The same model works for some other diseases (e.g., flu), with a suitable change of the
constants a and b. Again, this is a useful approximation of reality.

The error in a mathematical model falls outside the scope of numerical analysis, but
it is still an error with respect to the solution of the overall scientific problem of interest.

(E2) Blunders and Mistakes These errors are familiar to almost everyone. In
the precomputer era, blunders generally consisted of isolated arithmetic errors, and
elaborate check schemes were used to detect them. Today, the mistakes are more likely
to be programming errors. To detect these errors, it is important to have some way of
checking the accuracy of the program output. When first running the program, use cases
for which you know the correct answer. With a complex program, break it into small
subprograms, each of which can be tested separately. And when you believe the entire
program is correct and are running it for cases of interest, maintain a watchful eye as to
whether the output is reasonable.

(E3) Physical Measurement Errors Many problems involve physical data, and
these data contain observational error. For example, the speed of light in a vacuum is

¢ = (2.997925 + €) - 10'° cm/sec, le} < 0.000003 (2.19)

Because the physical data contain an error, calculations based on the data will contain
the effect of this observational error. Numerical analysis cannot remove the error in the
data, but it can look at its propagated effect in a calculation. Numerical analysis also
can suggest the best form for a calculation that will minimize the propagated effect of
the errors in the data. Propagation of errors in arithmetic calculations is considered in
Section 2.3. :

(E4) Machine Representation and Arithmetic Errors These occur when using
computers or calculators, as for example with the rounding or chopping errors discussed
in Section 2.1. These errors are inevitable when using floating-point arithmetic; and

2.2 ERRORS: DEFINITIONS, SOURCES, AND EXAMPLES 47

they form the main source of error with some problems, for example, the solution of
systems of linear equations. In Section 2.4, we will analyze the effect of rounding errors
for some summation procedures.

(ES) Mathematical Approximation Errors These are the major forms of error
in which we are interested in the following chapters. To illustrate this type of error,
consider evaluating the integral

1 2
I = / e dx
0

There is no antiderivative for e in terms of elementary functions and, thus, the integral
cannot be evaluated explicitly. Instead, we approximate the integral with a quantity that
can be computed. For example, use the Taylor approximation

4 6 8
—X° s — 2 x__....x.._. f.._
et ~] x+2' 3!+4|
Then
1 4 6 8
x x
,I@/O <1~x2+-2—'—-%+27>dx (2.20)

which can be evaluated easily. The error in (2.20) is called a mathematical approximation
error; some authors call it a truncation error or discretization error. Such errors arise
when we have a problem that we cannot solve exactly and that we approximate with
a new problem that we can solve. We try to estimate the size of these mathematical
approximation errors and to make them sufficiently small. For the above approximate
integral (2.20), apply the earlier example (1.18).

We will now describe three important errors that occur commonly in practice. They
are sometimes considered as sources of error, but we think of them as deriving from the
sources (E1) to (ES) described above. " Also, the size of these errors can usually be
minimized by using a properly chosen form for the computation being carried out.

2.2.2 Loss-of-Significance Errors

The idea of loss of significant digits is best understood by looking at some examples.
Consider first the evaluation of

f@) =x[Vx+1-.x] (2.21)

for an increasing sequence of values of x. The results of using a six-digit decimal
calculator are shown in Table 2.6. As x increases, there are fewer digits of accuracy in
the computed value of f(x).

48

Chapter 2 ERROR AND COMPUTER ARITHMETIC

Table 2.6. Values of (2.21)

x Computed f(x) True f(x)
1 0.414210 0.414214
10 1.54340 1.54347
100 4.99000 4.98756
1000 15.8000) 15.8074
10,000 50.0000 49.9988
100,000 100.000 158.113

To better understand what is happening, look at the individual steps of the calculation
when x = 100. On the calculator,

100 = 10.0000, +/101 = 10.0499

The first value is exact, and the second value is correctly rounded to six significant digits
of accuracy. Next,

Vx +1—/x =+/101 — +/100 = 0.0499000 (2.22)

while the true value should be 0.0498756. The calculation (2.22) has a loss-of-signifi-
cance error. Three digits of accuracy in +/x + 1 = +/101 were canceled by subtraction
of the corresponding digits in /X = +/100. The loss of accuracy was a by-product of
the form of f (x) and the finite precision six-digit decimal arithmetic being used.

For this particular f(x), there is a simple way to reformulate it so as to avoid the
loss-of-significance error. Consider (2.21) as a fraction with a denominator of 1, and
multiply numerator and denominator by +/x + 1 + /x, obtaining

«/x+1—\/f.\/x+1+\/f_ x
1 ViFIl+/x JrFl+x

The latter expression will not have any loss-of-significance errors in its evaluation. On
our six-digit decimal calculator, (2.23) gives

fx)=x (2.23)

f(100) = 4.98756

the correct answer to six digits.
As a second example, consider evaluating

f&x) = l—_—%)s@ (2.24)

for a sequence of values of x approaching 0. The results of using a popular 10-digit
decimal hand calculator are shown in Table 2.7. To understand the loss of accuracy, look

2.2 ERRORS: DEFINITIONS, SOURCES, AND EXAMPLES 49

Table 2.7. Values of (2.24) on a 10-digit calculator

X Computed f(x) True f(x)

0.1 0.4995834700 0.4995834722
0.01 0.4999960000 0.4999958333
0.001 0.5000000000 0.4999999583
0.0001 0.5000000000 0.4999999996
0.00001 0.0 0.5000000000

at the individual steps of the calculation when x = 0.01. First, on the calculator
co0s(0.01) = 0.9999500004

This has nine significant digits of accuracy, and it is off in the tenth digit by two units.
Next, compute

1 — cos(0.01) = 0.0000499996

This has only five significant digits, with four digits being lost in the subtraction. Division
by x% = 0.0001 gives the entry in the table.

To avoid the loss of significant digits, we use another formulation for f (x), avoiding
the subtraction of nearly equal quantities. By using the Taylor approximation in (1.15),
we get

x2 x4 6

x
=1— r_x
cos(x) 51 + T + Re(x)

8
&m=%w%)

with & an unknown number between 0 and x. Therefore,

1 22 x* xS
ﬂw=;{ p——+z—&+&@n

1 x2 JC4 6

X
Aot s ®

Thus, £(0) = 4. And for |x| < 0.1,

cos(f,—')' — =25.1071 (2.25)

50

Chapter 2 ERROR AND COMPUTER ARITHMETIC

Hence,

1 x2 x*
f(x)ga‘—dg'i"gp x| 0.1

with an accuracy given by (2.25). This gives a much better way of evaluatmg f(x) for
small values of x.

When two nearly equal quantities are subtracted leading significant digits will be
lost. Sometimes this is easily recognized, as in the above two examples (2.21) and (2.24),
and then ways can usually be found to avoid the loss of significance. More often, the
loss of significance will be subtle and difficult to detect. One common situation is in
calculating sums containing a number of terms, as when using a Taylor polynomial to
approximate a function f(x). If the value of the sum is relatively small when compared
with some of the terms being summed, then there are probably some s1gmﬁcant digits
of accuracy being lost in the summation process.

As an example of this last phenomenon, consider using the Taylor series approxi-
mation (1.13) for ¢* to evaluate e™>:

-5 (=52 (=5 (=5)*
e"5=1+(1!)+(2!) +(3!) +(4!) 4+ (2:26)

Imagine using a computer with four-digit decimal floating-point arithmetic, so that the
terms of this series must all be rounded to four significant digits. In Table 2.8, we give
these terms, along with the associated numerical sum of these terms through the given
degree. The true value of e is 0.006738, to four significant digits, and this is quite
different from the final sum in the table. Also, if (2.26) is calculated to much higher
precision for terms of degree < 25, then the correct value of e~ is obtained to four
digits.

In this example, the terms become relatively large, but they are then added to
form a much smaller number e~>. This means there are loss-of-significance errors in
the calculation of the sum. The rounding error in the term of degree 3 is of the same
magnitude as the error in the final answer in the table. To avoid the loss of significance
in this case is quite easy. Either use

1
e 3 = =
and form ¢ with a series not involving cancellation of positive and negative terms; or
preferably, simply form e~! = 1/e and multiply it by itself four times to form e~3. With
most other series, there is usually not such a simple solution.

GENERAL OBSERVATION:

Suppose a sequence of numbers is being summed in order to obtain

an answer S. If § is much smaller in magnitude than some of the terms
being summed, then S is likely to contain a loss of significance error.

(2.27)

Example 2.2.2

2.2 ERRORS: DEFINITIONS, SOURCES, AND EXAMPLES 51

Table 2.8. Calculation of (2.26) using four-digit decimal arithmetic

Degree Term Sum Degree Term Sum

0 1.000 1.000 13 -0.1960 —0.04230
1 -5.000 —4.000 14 0.7001E — 1 0.02771
2 12.50 8.500 15 —0.2334E — 1 0.004370
3 —20.83 —-12.33 .16 0.7293E — 2 0.01166 -
4 26.04 13.71 17 —0.2145E — 2 0.009518
5 —26.04 -12.33 18 0.5958E — 3 0.01011
6 21.70 9.370 19 —0.1568E — 3 0.009957
7 -15.50 —6.130 20 0.3920E — 4 0.009996
8 9.688 3.558 21 —0.9333E -5 0.009987
9 -5.382 —1.824 22 0.2121E -5 0.009989
10 2.691 0.8670 23 —-0.4611E — 6 0.009989
11 -1.223 —0.3560 24 0.9607E — 7 0.009989
12 0.5097 0.1537 25 —0.1921E —- 7 0.009989

2.2.3 Noise in Function Evaluation

Consider evaluating a function f(x) for all points x in some interval g < x < b. If the
function is continuous, then the graph of this function is a continuous curve. Next,
consider the evaluation of f(x) on a computer using floating-point arithmetic with
rounding or chopping. Arithmetic operations (e.g., additions and multiplications) cause
errors in the evaluation of f(x), generally quite small ones. If we look very carefully at
the graph of the computed values of f(x), it will no longer be a continuous curve, but
instead a “fuzzy” curve reflecting the errors in the evaluation process.

"

To illustrate these comments, we evaluate f(x) = (x — 1)* . We do so in the nested form
f)=-14+xGB+x(-3+x) (2.28)

using MATLAB. The arithmetic in MATLAB uses IEEE double precision numbers and
standard rounding. Figure 2.1 contains the graph of the computed values of f(x) for
0 < x <2, and it appears to be a smooth continuous curve. Next we look at a small
segment of this curve, for 0.99998 < x < 1.00002. ‘The plot of the computed values
of f(x) is given in Figure 2.2, for 81 evenly spaced values of x in [0.99998, 1.00002].
Note that the graph of f(x) does not appear to be taken from a continuous curve, but
rather, it is a narrow “fuzzy band” of seemingly random values. This is true of all parts
of the computed curve of f(x), but it becomes evident only when you look at the curve
very closely. =

52

Chapter 2 ERROR AND COMPUTER ARITHMETIC

-1

Figure 2.1. f(x) =x>—3x*+3x -1

x 10718
A N

6

a4l -
2

™

g x

P | Y
s 1:00000 1.00002

2k o
-4 B
6|

8l ‘
Figure 2.2. A detailed graph of f(x)=x>—3x*+3x~1nearx =1

Functions f(x) on a computer should be thought of as a fuzzy band of random
values, with the vertical thickness of the band quite small in most cases. The implications
of this are minimal in most instances, but there are situations where it is important. For
example, a rootfinding program might consider (2.28) to have a very large number of
roots in [0.99998, 1.00002] on the basis of the many sign changes, as shown in Figure
2.2.

2.2.4 Underflow and Overflow Errors

From the definition of floating-point numbers given in Section 2.1, there are upper and
lower limits for the magnitudes of the numbers that can be expressed in floating-point
form. Attempts to create numbers that are too small lead to what are called underflow
errors. The default option on most computers is to set the number tc zero and to then
proceed with the computation.

2.2 ERRORS: DEFINITIONS, SOURCES, AND EXAMPLES 53

For example, consider evaluating
fx)=x" (2.29)

for x near 0. When using IEEE single precision arithmetic, the smallest nonzero positive
number expressible in normalized floating-point format is

m=2"126 =118 x10"3% (2.30)

See Table 2.2 with E = 1 and (a1a; . . .az3), = (00...0),. Recall that unnormalized
floating-point single precision format refers to (2.4) and Table 2.2 with E = 0. Thus,
f(x) will be set to zero if

x1°<m

x| < Wm = 1.61 x 10~*
—0.000161 < x < 0.000161

Similar results will be valid for other floating-point formats, with the actual bound
dependent on the exponent range of the floating-point representation. Some programs
also allow the use of unnormalized floating-point numbers (e.g., MATLAB), and then the
allowable size of a number is smaller, although with less precision in the significand.

Attempts to use numbers that are too large for the floating-point format will lead to
overflow errors, and these are generally fatal errors on most computers. With the IEEE
floating-point format, overflow errors can be carried along as having a value of =00 or
NaN, depending on the context. Usually, an overflow error is an indication of a more
significant problem or error in the program and the user needs to be aware of such errors.

In a few situations, it is possible to eliminate an overflow error by just reformulating
the expression being evaluated. For example, consider evaluating

z=+x2+y?

If x or y is very large, then x + y? might create an overflow error, even though z might
be within the floating-point range of the machine. To avoid this, let

x| /1+ (y/x)?, 0=yl = lx|
ylV1+@®/y)?2 0<lx| <yl

In both cases, the argument of the square root is of the form 1 + w? with |w| < 1. This
calculation will not cause any overflow error, except when z is too large to be expressed
in the floating-point format being used.

Z =

PROBLEM ‘S 1. Calculate the error, relative error, and number of significant digits in the following
' approximations x4 = x7:

54 Chapter 2 ERROR AND COMPUTER ARITHMETIC

(a) xp =28.254, x4, =28.271 (b) xr =0.028254, x4 = 0.028271
(© xr=e,x4a=19/7 d) xr=+2,x4=1414
(€ xr=10g(2), x4 =07

2. (a) In the population growth model of (2.18), N(z) = Noe®, give a physical
meaning to the constant No.

(b) Show that N(¢) satisfies

N+ 1)

N© = constant

Thus, N(z + 1) = (constant) - N (¢), and the population increases by a con-
stant ratio with every increase in ¢ of 1 unit. Is this reasonable physically?

3. Aslightly more sophisticated model for population growth is given by

N(@) = t=>0

¢
T+et’
for some positive constants N, and b. Identify a major difference between this

model and the one in Problem 2. What is the physical meaning of the constant
N.? ’ :

Hint: Look at the behavior of each model as ¢ becomes larger.

4. Bound the error in (2.20), using the remainder formula for the Taylor polynomial
being used.

5. In some situations, loss-of-significance errors can be avoided by rearranging the
function being evaluated, as was done with f(x) in (2.23). Do something similar
for the following cases, in some cases using trigonometric identities. In all but

I case (b), assume x is near 0.

i

(@) '1':;& () log(x + 1) —log(x), x large
n (¢) sin(a + x) —sin(a) @ J1+x-1

‘ JITE-2

" (e) —

6. Use Taylor polynomial approximations to avoid the loss-of-significance errors in
the following formulas when x is near 0:

@ S b = © L2
X X 2x
_ x/2 (1 — V2l
@ log(1 xz + xe © 1—-(1-x)
X p
® x — sin(x) ©® x — sin(x) @) x+log(l—x)

x3 tan(x) v x2

2.2

N

10.
11.

12.

13.

ERRORS: DEFINITIONS, SOURCES, AND EXAMPLES 55
Consider the identity
X 1 _ 2
/ sin (xt) dr = 1= cos (x?)
0 X

Explain the difficulty in using the right-hand fraction to evaluate this expression
when x is close to zero. Give a way to avoid this problem and be as precise as
possible.

Repeat Problem 7 with the identity
1—e*

x2

f(x)=-1—fxe"’“dt= , x#0
X Jo

(@) Solve the equation x% — 26x + 1 = 0 using the quadratic formula. Use
five-digit decimal arithmetic to find numerical values for the roots of the
equation; for example, you will need +/168 = 12.961. Identify any loss-of-
significance error that you encounter.

(b) Find both roots accurately by using only five-digit decimal arithmetic.
Hint: Use

1
13 - +/168 = —————
13 + /168
Repeat Problem 9 for the equation x> — 40x + 1 = 0, using +/399 = 19.975.

Discuss the possible loss-of-significance error that may be encountered in solving
the quadratic equation ax? + bx + ¢ = 0. How might that loss-of-significance
error be avoided?

Computationally, examine the accuracy of the identity

w

sin(x) = /1 — cos2(x), 0<x< %

for values of x near to 0. Take values of x approaching 0 and examine the relative
error in the computed values of /1 — cos?(x), comparing them by using the values

of sin(x) computed directly.
[, L.
fx)y=4/14+-"-1
x

for large values of x. Calculate

Find an accurate value of

Jim =0

56 Chapter 2 ERROR AND COMPUTER ARITHMETIC

14. Consider evaluating cos(x) for large x by using the Taylor approximation

15.

16.

17.

18.

- x2 x2n
~ 11— — -1
cos(x) T + (=1 @l

To see the difficulty involved in using this approximation, use it to evaluate
cos(2r) = 1: -

@Qr)? @n)* , 2m)2
TR TR (2n)!

cos(2r) ~ 1 —

Assume that we are using decimal arithmetic, say, a four-digit decimal floating-
point arithmetic with rounding. If 2z = 20, then the error in this approximation
is 0.00032 and, thus, the polynomial should be sufficiently accurate relative to the
floating-point arithmetic being used. Now evaluate each term and round it to four
significant digits, to find its exact floating-point representation. For example, the
first three such terms are 1.000, —19.74, 64.94. Having found these 11 terms, add
them up exactly. How closely do they approximate cos(27) = 1.0007 Explain
the source of the inaccuracy.

Repeat the example of Example 2.2.2 for the function f(x) = (x — 1)3, but use
fx)=x>=3x2+3x—1

rather than the nested form of (2.28). Note any differences, if any.

Evaluate the following polynomials p(x) on the given intervals. Evaluate p(x)
in the given form and in the nested form. Use a fairly large number of points x in
the given interval. Both sets of function values will contain “noise,” but generally
they will be different because of the different formulations being used for p(x).
Subtract the nested values from the corresponding direct values, and print these
numbers on the given intereval. This gives a composite of the noise from the two
ways of evaluating p(x), and it gives some idea of the size of the noise. Plot the
values of x versus p(x), and plot x versus the composite noise.

(@ x*—5.4x3+10.56x? —8.954x +2.7951,09 <x < 1.3
) x5 +0.9x* — 1.62x3 — 1.458x% + 0.6561x + 0.59049, —1.1 < x < —0.6

Repeat Example 2.2.2 and Problem 15, using the polynomial
p(x) = x* — 5.4x% +10.56x% — 8.954x + 2.7951

Look at values of p(x) for x around 1.1.

To generate an overflow error on your computer, write a program to repeatedly
square a number x > 1 and print the result. Eventually, you will exceed your
machine’s exponent limit for floating-point numbers.

2.3 PROPAGATION OF ERROR 57

19. For what values of x does x'° underflow using IEEE double precision normalized
floating-point arithmetic. When does it overflow?

19.3. PROPAGATION OF ERROR

Example 2.3.1

If a calculation is done with numbers that contain an error, then the resultant answer will
be affected by these errors. We will look first at the effect of using such numbers with
the ordinary arithmetic operations, and later we will consider the effect on more general
function evaluations. Let x4 and y,4 denote the numbers used in the calculation, and let
x7 and yr be the corresponding true values. We wish to bound

E = (xrwyr) — (xawya) (2.31)
where @ denotes one of the operations “+,” “—,” “..”” or “+.” The error E is called the
propagated error.

The first technique used to bound E is known as interval arithmetic. Suppose we

know bounds for x; — x4 and yr — y4. Then using these bounds and x4 wy4, we look
for an interval guaranteed to contain xrwyr.

Let x4 = 3.14 and y4 = 2.651 be correctly rounded from x7 and y7, to the number of
digits shown. Then

|x4 — xr| < 0.005, |ya — yr| < 0.0005
or, equivalently,
3.135 < xr < 3.145 2.6505 < yr < 2.6515 (2.32)
For the operation of addition
x4 +ya=15.791 (2.33)
For the true value, use (2.32) to obtain the bounding interval

3.135 +2.6505 < xr + yr < 3.145+2.6515

2.34
5.7855 < x7 + yr < 5.7965 234)

To obtain a bound for the propagated error, subtract (2.33) from (2.34) to get

—0.0055 < (xr + yr) — (x4 + ya) < 0.0055

58

Chapter 2 ERROR AND COMPUTER ARITHMETIC
With division,
—— =1.184459 (2.35)

Also,

3135 _xr _ 3.145
2.6515 ~ yr ~— 2.6505

Dividing the fractions and rounding to seven digits, we obtain

1.182350 < %3 < 1.186569 (2.36)
T

For the error,

—0.002109 < g—z- —1.184459 < 0.002110 =
T

This technique of obtaining an interval that is guaranteed to contain the true answer
is called interval arithmetic. It is a useful technique, and it has been implemented on
computers, both using software and hardware. But for extended calculations, interval
arithmetic must be implemented with a great deal of care or else it will lead to predicted
error bounds that are far in excess of the true error. Much progress has been made in
developing practical implementations of interval analysis, but it is not yet a widely used
technique for the control or bounding of errors in practical computations. That seems
likely to change in the future.

Propagated error in multiplication We compare xryr and x4y4. The relative
error in x,y4 as compared to xryr is

XTYT — XAYA
X7 YT

Rel(xaya) =

Letxr = x4 +¢€,yr = ya + 7. Then

xryr — (xr —€) (yr — 1)
XTyYr
_ nxr +é€yr —e€n
Xryr 2.37

€
-5+ () ()
Xr yr Xr yr

= Rel(x4) + Rel(ya) — Rel(x4) Rel(ya)

Rel(xaya) =

2.3 PROPAGATION OF ERROR 59

When both Rel(x,) and Rel(y,) are small in size compared with 1, -
Rel(xaya) ~ Rel(xa) + Rel(y,) (2.38)

This shows that relative errors propagate slowly with multiplication, a very desirable
property. The propagated error in using division is examined in Problem 9, and it has
similarly nice properties.

Propagated error in addition and subtraction The operations of addition and
subtraction need not be as well-behaved. We can have small values of Rel(x,) and
Rel(y4), with Rel(x4 % y4) much larger; and Problems 9 and 10 of Section 2.2 can be
used as illustrations of this. With reference to Problem 9, let

Xy =x4 =13
yr = /168, ya = 12.961

For the relative errors,

Rel(xs) =0, Rel(ys) = 0.0000371
Error(xs — y4) = —0.0004814
Rel(xs — y4) = —0.0125

This source of error is connected closely to loss-of-significance errors.

Total calculational error When using floating-point arithmetic on a computer, the
calculation of x4wy,4 involves an additional rounding or chopping error, just as in the
example (2.35). The computed value of x4wy, will involve the propagated error plus a
rounding or chopping error. To be more precise, let & denote the complete operation as
carried out on the computer, including any rounding or chopping. Then the total error is
given by

(70yr) = (radya) = [(Froyr) — Eaoydl + [(awya) — (cabya)] (239)
The first term on the right is the propagated error; the second term is the error in computing
XAWYA-

When using IEEE arithmetic with the basic arithmetic operations, we have

xa0ys =fl(xawy,) * (2.40)

This says that the arithmetic calculation x4wy, is to be carried out exactly and then
rounded or chopped to standard floating-point length. For the error, use (2.11) to write

fA(xawys) = (1 + €)(xawya)

60

Example 2.3.2

Chapter 2 ERROR AND COMPUTER ARITHMETIC

with € bounded as in (2.12)—(2.16). Combining this with (2.40), we get

(xawya) — (xadys) = —€(xq@ya)
(xawya) — (xa®Dya) — e (2.41)
XAWYA

Thus, the process of rounding or c;hopping' introduces a relatively small new error into
x4ya as compared with xqwya.

2.3.1 Propagated Error in Function Evaluation

Consider evaluating f (x) at the approximate value x4 rather than at x7. Then consider
how well does f(x4) approximate f(xr)? There will also be an additional error intro-
duced in the actual evaluation of f (x4), resulting in the noise phenomena described in
Section 2.2. But we will be concerned here with just comparing the exact value of f(x4)
with the exact value of f(xr).

Assume f'(x) exists and is continuous for a < x < b. Using the mean value theo-
rem (Theorem A.4, equation A.3) of Appendix A, we get

flxr) = f(xa) = f/(©)(xr — x4) (2.42)

with ¢ an unknown point between x4 and x7. Since x4 and xr are generally very close
together, we have

flxr) = flxa) = f'xr)xr — x4) = f/(xa)(xr — x4) (2.43)
In most instances, it is better to consider the relative error

O PN i(C7")
fen T T e

Rel(f(xa4)) =~ xr Rel(x4) (2.44)

In chemistry, one studies the ideal gas law
PV =nRT
in which R is a constant for all gases. In the MKS measurement system,
R =28.3143 + ¢, lle] < 0.0012

To see the effect of this uncertainty in R in a sample computation, consider evaluating
T,assuming P =V =n = 1. Then

|-

TR

i

Example 2.3.3

2.3 PROPAGATION OF ERROR 61
Define
1
fx)=—
x

and evaluate it at x = R. Letting

XT =R, XA = 8.3143

we assume
X7 — JCA| < 0.0012
For the error
1 1
E=% %38 245)
we have from (2.43) that

1
Bl =1fGr) = fa)l = | £/ @a)| ler — xa] < (;) (0.0012) = 1.74 x 107
A

For the relative error,

E - : S
= |Lon) = Flra)| LTAX 0T o014
fxr) Jxr) 0.1202
Thus, the uncertainty in R has resulted in a relatively small error in the computed value
1. 1
= -
R 8.3143

"

We apply (2.42) to the evaluation of
| £ =
where b is a positive constant. Using
f/(x) = (logh)b*
formulas (2.43) and (2.44) yield

b — b* & (log b)b™ (x7 — x4)

(2.46) -
Rel(b**) =~ (log b)x7 Rel(x,)

62

PROBLEMS

Chapter 2 ERROR AND COMPUTER ARITHMETIC

This example is also of interest for another reason. If the quantity
K = (logb)xr (2.47)

is large in size, then the relative error in b* will be much larger than the relative error in
x4. For example, if Rel(xa) = 10-7 and K = 10*, then Rel(b*) = 1072, a significant
decrease in the accuracy of b*4 as compared with x4, independent of how b™ is actually
computed. The quantity in (2.47) is called a condition number. It relates the relative
accuracy of the input to a problem (x4 in this case) to the relative accuracy of the output
(namely, b*4). For a more formal definition, see Atkinson (1989, p. 86). We will return
to the concept of condition number at other points in this text. ®

1. TLet all of the numbers given below be correctly rounded to the number of digits
shown. For each calculation, determine the smallest interval in which the result,
using true instead of rounded values, must lie.

(a) 1.1062 +0.947 (b) 23.46—12.753
() (2.747)(6.83) (d) 8.473/0.064

2. Use interval arithmetic to bound the error E of (2.45), just as was done following
(2.34) and (2.36). Compare with the result given following (2.45).

3. Referring to Section 2.1, find the bounds for the € in (2.41) for using the IEEE
arithmetic standard. '

4. Find bounds for the error and relative error in approximating sin (ﬁ) by sin(1.414).

In the following function evaluations f (x4), assume the numbers x4 are correctly
rounded to the number of digits shown. Bound the error f(xr) — f(xa) and the
relative error in f(xa) using (2.43).

(a) cos(1.473) (b) tan~1(2.62) () log(1.4712)
@ & (e) ~/0.0425

6. For the function f(x) = /%, x > 0, estimate fxr) — f(x4) and Rel(f(xa))-
For what values of xr, if any, is there a possible problem with loss of accuracy?

7. Bound
T2 2/1 g2
dt — —dt
,/0 1+ fg 1+

x t2
£ = /0 et

Hint: Define

Apply (2.43) to f () — f(22/7).

2.4 SUMMATION 63

8. Let f(x) =tanx. Let xr ~ x4, with ~1n < x7, x4 < 37 and |x7 — x4/ quite
small. Relate the relative error in x, (in relation to x7) to the relative error in

tan x4 (in relation to tan x7). What happens in this relationship for the case that
XT,Xp R %n?

9. Following the mefhod used in deriving (2.37)~(2.38), show that

Rel(x4) — Rel
Rel(xa/ya) = - ixi)Rel(;AgyA)

= Rel(x4) ~ Rel(y4)

with the latter holding true for cases where Rel(y,) is small compared with 1.

10. To illustrate (2.46) and (2.47), compare 719 to 71001 Calculate these directly,
as accurately as you can. (Most calculators carry enough decimal places to obtain
sufficiently accurate answers for these exponentials.) Then calculate Rel(r1001)
directly and using (2.46). Also give the condition number K of (2.47).

1. Let f(x) =& —1)(x—2)...(x —n). Note that f(1)=0. Estimate f(1+
1074 by using (2.43) with x; = 1, forn =2, 3, ..., 12. Comment on the impli-
cations of this for finding the roots of f(x), say, for the case n = 8.

“Hint: Do not calculate f'(x) by first multiplying out f(x). Instead, use the
product rule for derivatives to evaluate f’(x), and then obtain f'(1).

2.4. SUMMATION

There are many situations in which sums of a fairly large number of terms must be
calculated. We will study the errors introduced when doing summation on a computer
and look at ways to minimize the error in the final computed sum.

Let the sum be denoted by

n
S=ai+a+--+a,=) a (2.48)
j=1

where each a; is a floating-point number. Adding these values in the machine amounts
to calculating a sequence of n — 1 additions, each of which will probably involve a
rounding or chopping error. More precisely, define

Sy = fl(a; + a2)

the floating-point version of a; + a; [recall the use of fl(x), introduced in the paragraph
preceding (2.11)]. Next, define

64

Example 2.4.1

Chapter 2 ERROR AND COMPUTER ARITHMETIC

S3 = fl(as + S,)
Sy = fl(ag + S3)

Sy = fl(an + Sa-1)

S, is the computed version of S.
From (2.11),

Sz = (a1 + a)(1 + €)

S; == (a3 + $2)(1 + €3) (2.49)

S, = (@ + Se)(1 + &)

If we assume IEEE arithmetic is used, each ¢; satisfies the bounds of (2.12)—(2.16). The
choice depends on whether chopped or rounded arithmetic is used, and it also depends
on whether single or double precision IEEE arithmetic is used.

The terms in (2.49) can be combined, manipulated, and estimated to give

S_Sn%_a1(€2+.'.+€n)—a2(€2+."+€ﬂ)—a3(€3+"'+€ﬂ) (250)
_a4(64+"‘+€n)—"'“an5n ’

If we look carefully at the formula and try to minimize the total error § — Sy, the following
appears to be a reasonable strategy: Arrange the terms ay, ay, . . ., a, before summing
so that they are increasing in size

lai] < lag] < las] < -+ < |an| (2.51)

Then the terms on the right side of (2.50) with the largest number of ¢;’s are multiplied
by the smaller vatues among the a;’s. This should make S — S, smaller, without much
additional cost in most cases. This is a reasonable strategy, although there are better
ones (which are also more complicated to implement).

Define the terms a; of the sum S as follows: Convert the fraction 1/j to a decimal
fraction, round it to four significant digits, and let this be a;. To make more clear the
errors in the calculation of S, we use a decimal machine that has four digits in the
significand of a floating-point number. Adding S from the largest term to the smallest
term is denoted by “LS” in Tables 2.9 and 2.10; and adding from smallest to largest is
denoted by ““SL.” The column “True” gives the true sum S, rounded to four digits. Table
2.9 gives the summation results for a decimal machine that uses chopping in all of its
floating-point operations. Table 2.10 gives the analogous results for a machine using
rounding.

In both tables, it is clear that the strategy of summing S from the smallest term to
the largest is superior to the opposite procedure of summing from the largest term to the

2.4 SUMMATION 65

Table 2.9. Calculating S on a machine using chopping

n True SL Error LS Error
10 2.929 2.928 0.001 2.927 0.002
25 3.816 3.813 0.003 " 3.806 0.010
50 4.499 4.491 0.008 4.479 0.020
100 5.187 5.170 0.017 5.142 0.045
200 5.878 5.841 0.037 5.786 0.092
500 6.793 6.692 0.101 6.569 0.224
1000 7.486 7.284 0.202 7.069 0.417

Table 2.10. Calculating S on a machine using rounding

n True SL Error LS Error
10 2.929 2.929 0 2.929 0

25 3.816 3.816 0 3.817 -0.001
50 4.499 4.500 -0.001 4.498 0.001
100 5.187 5.187 0 5.187 0

200 - 5.878 5.878 0 5.876 0.002
500 6.793 6.794 —0.001 6.783 0.010
1000 7.486 7.486 0 7.449 0.037

smallest. However, with the machine that rounds, it takes a fairly large number of terms
before the order of summation makes any essential difference. =

2.4.1 Rounding versus Chopping

A more important difference in the errors shown in the tables is that which exists between
rounding and chopping. Rounding results in a far smaller error in the calculated sum
than does chopping. To understand why this happens, return to the formula (2.50). As
a typical case from it, consider the first term on the right side:

.

T=-a(ea+-+e) (2.52)

Assume that we are using rounding with the four-digit decimal machine of the above
example. In analogy with the derivation of (2.11)~(2.16) for our decimal machine, we
know that all ¢; satisfy

66

Example 2.4.2

Chapter 2 ERROR AND COMPUTER ARITHMETIC

Table 2.11. Calculation of (2.56): rounding versus chopping

n True Rounding Error Chopping Error
10 2.92896825 —1.76E -7 3.01E-7
50 4.49920534 7.00E -7 3.56E - 6
100 5.18737752 —~4.12E -7 6.26E — 6
500 6.79282343 -132E~-6 3.59E -5
1000 7.48547086 8.88E— 8 7.35E -5
—0.0005 < €; < 0.0005 (2.53)

Rounding errors can usually be treated as random in nature, subject to this bounding
interval. Thus, the positive and negative values of the ¢;’s in (2.52) will tend to cancel,
and the sum T will be nearly zero. By using advanced methods from probability theory,
it can be shown that (2.52) is very likely to satisfy

IT| < (1.49)(0.0005) - /7 |a;|

The value of T is proportional to /n. Thus, (2.52) tends to be small until # becomes
quite large, and the same is true of the total error on the right of (2.50).
For our decimal machine with chopping, (2.53) is replaced by

—0.001 <¢; <0 (2.54)

and the errors are all of one sign. Again, the chopping errors will vary randomly in
this interval. But now the average value of the €;’s will be —0.0005, the middle of the
interval; and the likely value of (2.52) will be

—ai(n — 1)(—0.0005) (2.55)

Thus, T is proportional to #, whereas the corresponding result for the case of rounding
was that 7' was proportional to ./z; and n increases more rapidly than +/z. Thus, the
error (2.52) and (2.50) will grow much more rapidly when chopping is used rather than
rounding.

We use a binary computer for which both rounding and chopping are available, with
a single precision accuracy of six to seven decimal digits. To illustrate the difference
between rounding and chopping, consider evaluating

"1
S = 2 :; (2.56)
Jj=1

"2.4 SUMMATION 67 .

in single precision arithmetic. For this calculation, errors occur in both the calculation
of the floating-point form of 1/j and in the summation process. Table 2.11 contains the
errors for the two modes of calculation. The value in column “True” was calculated
by using double precision arithmetic to evaluate (2.56). Also, all sums were performed
from the smallest term to the largest. =

2.4.2 A Loop Error

An important example of accumulated errors is the computation of independent variables
in a loop computation (e.g., DO-loops in Fortran and Jfor-loops in MATLAB). Suppose
we wish to calculate

Xx=a+ jh (2.57)

forj=0,1,2,...,nfor given A > 0. This is then used in a further computation, often
to evaluate some function f(x). The question we wish to consider here is whether x
should be computed as in (2.57) or by using the statement

x=x+h (2.58)

in the loop, having initially set x = a before beginning the loop. These are mathemati-
cally equivalent ways to compute x, but they are usually not computationally equivalent.
The difficulty with computing x arises generally when 4 does not have a finite
binary expansion that can be stored in the given floating-point significand, for example,
h = 0.1. The computation (2.57) will involve two arithmetic operations and, thus, only
two chopping or rounding errors, for each value of x. In contrast, the repeated use of
(2.58) will involve a succession of additions, in fact, j of them for the x of 2.57). As
x increases in size, the use of (2.58) involves a larger number of rounding or chopping
errors, leading to a different quantity than in (2.57). Thus, (2.57) is usually the preferred
way to evaluate x. »
To provide a specific example, we give a program to compute the value of x in the
two possible ways. We use @ = 0 and % = 0.1. To check the accuracy, we also compute
the true desired value of x by using a double precision computation. This program was
run on a binary computer using IEEE arithmetic, and the results for selected x i =Jjh
are shown in Table 2.12. There is a significant improvement with (2.57) over (2.58).

2.4.3 Calculation of Inner Products

A sum of the form

n
S=abi+amby+-- +aby =Y asb; (2.59)
=1

68

Chapter 2 ERROR AND COMPUTER ARITHMETIC

Table 2.12. Evaluationofx =j-h, h =0.1

Error Using Error Using

j x (2.57) (2.58)

10 1 1.49E -8 —1.04E -7
20 2 2.98E -8 —2.09E -7
30 3 447E -8) 7.60E — 7
40 4 5.96E — 8 1.73E -6
50 5 745E -8 2.46E - 6
60 6 8.94E — 8 343E -6
70 7 1.04E -7 4.40E - 6
80 8 1.19E -7 5.36E — 6
90 9 1.34E -7 2.04E -6
100 10 1.49E — 7 —1.76E — 6

is called a dot product or inner product. Typically, the terms a; and b; are components of
vectors A and B, and S is the inner product of A and B. Such sums occur quite often in
solving certain kinds of problems, particularly those involving systems of simultaneous
linear equations. '

If we calculate S in single precision, then there will be a single precision round-
ing error for each multiplication and each addition. Thus, there will be 2z — 1 single
precision rounding errors involved in calculating S. The consequences of these errors
can be analyzed in the manner of (2.50), and we could derive an optimal strategy for
the calculation of (2.59). Instead, we will look at a simpler alternative, using the double
precision arithmetic of the computer.

Convert each a; and b; to double precision by extending their significands with
zeros. Multiply them in double precision and sum them in double precision; when
done, round the answer to single precision to obtain the calculated value of S. For
machines with IEEE arithmetic, this procedure is a simple and rapid way to obtain more
accurate inner products in single precision computations, and there need be no increase
in storage space for the arrays A and B. The accuracy is improved, since there will be
only one single precision rounding error, regardless of the size of n. When the main
calculations are already in double precision, some type of extended precision arithmetic is
needed. The IEEE floating-point arithmetic standard contains such an extended precision
arithmetic.

MaATLAB uses only double precision IEEE arithmetic, and so it is not suitable to
illustrate the ideas described here. Following is a function subprogram SUMPRD, written
in Fortran. In'it, the elements of A and B are converted to double precision by using
the built-in function DBLE, which converts numbers to their equivalent forms in double
precision by appending a suitable number of the digit 0.

PROBLEMS

2.4 SUMMATION

aaoaoaoaaoacaaoaaoaaaan

REAL FUNCTION SUMPRD(A,B,N)
THIS CALCULATES THE INNER PRODUCT

I=N
SUMPRD = SUM A(I)#*B(I)
I=1

THE PRODUCTS AND SUMS ARE DONE IN DOUBLE
PRECISION, AND THE FINAL RESULT IS CONVERTED
BACK TO SINGLE PRECISION.

REAL A(*), B(%)
DOUBLE PRECISION DSUM

DSUM = 0.0D0
DO I=1,N .
DSUM = DSUM + DBLE(A(I))*DBLE(B(I))
END DO
SUMPRD = DSUM
RETURN
END

1. Write a computer program to evaluate

S=Zaj

j=1

69

for arbitrary n, and apply it to the series given below. Do the calculation by both

the methods LS and SL. For LS, compute and sum the terms from the largest

term first to the smallest term last. For SL, do the calculation in the reverse order.
Calculate a true value for S using the given answer, and compare it with the values

obtained by LS and SL.

- 1 n
® 25D =ar

i 1 3 2n+3
®) ;’;—; JG+2) 4 2+ D@m+2)

n 1 n
© ;m[ﬁ+Jj+l] Ve T Uy

Use n = 10, 50, 100, 500, 1000, 5000.

Chapter 2 ERROR AND COMPUTER ARITHMETIC

2. Repeat Problem 1 for the sums of the geometric series

n . l_xn+l
E 3 = —
- 1—x
j=0

with x = 0.01,0.1,0.5,0.9, and 0.99. Comment on the numerical results for
different values of x.

3. Consider using the partial sum

2j+1

n Cx
Su(x) = (—l)j e
j;o 2j+ D!

to approximate sinx. For x = 0.1, 1, and 10, calculate S, (x) by both methods
LS and SL, and compare the results against sin x. Use n = 10, 100, 1000.

4. Derive the formula (2.50) for the cases n = 2, 3, and 4 from the formulas (2.49).

Hint: If the €;’s are small, as indicated in (2.12)—(2.16), then €;¢; is very small
compared with ¢; and can therefore be neglected when added to €;.

5. Implement the Fortran subprogram SUMPRD given in this section. Apply it to
the sums of Problem 1, regarding the sum as an inner product of two arrays. For

(a), write
a=[t L L2
23 n

B 1 1
T1273 7 41

Also, compute the same inner product by using only single precision arithmetic
and compare it to your answer obtained by using SUMPRD.

6. Consider evaluating p = a1as - - - p with ¢; = fl(@;),i = 1,2, ..., n. Define

p2 = fl(a1a2), ps = fl(p2as3), e Pn = A(pa-1an)

Using the type of argument applied in deriving (2.50), derive an estimate for
pn — p and Rel(p,), showing the effect of the rounding or chopping errors that
occur in forming p2, . .- Pr-

ROOTFINDING

.O......‘......Q.I......Q.‘......ll......‘.C..l‘....".......l..........Ql.....

Example 3.0.1

Calculating the roots of an equation
f&x)=0 : 3.1

is a common problem in applied mathematics. We will explore some simple numerical
methods for solving this equation and also will consider some possible difficulties. We
begin by giving a simple example that arises in financial planning.

When planning for retirement at some distant time, we invest money so as to have a
satisfactory income during our retirement years. A simiple version of this process leads
to the idea of an annuity, and we briefly discuss it here.

Assume that an amount of Py, is deposited into a savings account at the beginning
of each of Nj, time periods. For example, if done monthly, then multiply the number
of years until retirement by 12 to obtain Nj,. Following the Ny, time periods of saving
contributions, assume an amount of P, is withdrawn from the account for each of

71

72

3.1.

Chapter 3 ROOTFINDING

N,y time periods. The first withdrawal occurs at the beginning of time period Nj, + 1.
During these Nip + Noy time periods, the account is to earn interest at a compound
rate of r per time period. For example, if the interest on the account is compounded
monthly at an annual rate of 6%, then r = 0.06/12 = 0.005. After the final withdrawal,
we assume the account has been drawn down to zero. What is the relationship between
Py, Pouts Nins Nout, and r? ,
At the end of period Nj,, the amount in the account will be
N (14 —1

S = Pal(l+7r)M +. 4+ (1 +1)}=Pau(l +r)—————-r————
At the beginning of time period Niy + 1, we withdraw the first of Noy; payments, each of
amount Pyy; and at the beginning of period Nin + Nout, the final payment is withdrawn
and the account is assumed to be empty. The amount left after the first withdrawal is
Sin — Pout; and after Now withdrawals, with compounding of interest for amounts held
in the account for intermediate periods, the account contains

A4 —1
- =

(14 r)Neu=1 Sy — Pou 0

By combining with the formula for Sin and simplifying, we obtain
FO) = Pal(l+)Y — 1] = Poull =1+ 1)1 =0 (3.2)

Given any four of the quantities Pi, Pou» Nin, Nou, and 7, find the fifth one. This is
straightforward in all instances but one: Finding r is a rootfinding problem for which
we must use a numerical method. We will return later to this in the problems. &

The function f(x) of the equation (3.1) will usually have at least one continuous
derivative, and often we will have some estimate of the root that is being sought. By using
this information, most numerical methods for (3.1) compute a sequence of increasingly
accurate estimates of the root. These methods are called iteration methods. We will
study three different methods in the first three sections of this chapter; and in Section
3.4, we give a general theory for one-point iteration methods. Section 3.5 considers
difficulties that occur in solving (3.1) for some special types of functions fx).

THE BISECTION METHOD

In this chapter, we assume that f (x) is a function that is real-valued and that x is a real
variable. Suppose that f(x) is continuous on an interval a <'x < b and that

f@f®) <0 (33)

Example 3.1.1

3.1 THE BISECTION METHOD 73

Then f (x) changes sign on [a, b], and f(x) = O has at least one root on the interval. The
simplest numerical procedure for finding a root is to repeatedly halve the interval [a, b],
keeping the half on which f(x) changes sign. This procedure is called the bisection
method. It is guaranteed to converge to a root, denoted here by .

To be more precise in our definition, suppose that we are given an interval [a, b]
satisfying (3.3) and an error tolerance € > 0. Then the bisection method consists of the
following steps:

B1. Define ¢ = (a + b)/2.
B2. If b — ¢ < ¢, then accept ¢ as the root and stop.

B3. Ifsign[f(b)]-sign[f(c)] <0, thenseta = c.
Otherwise, set b = c. Return to step B1.

The interval [a, b] is halved with each loop through steps B1 to B3. The test B2 will be

‘satisfied eventually, and with it the condition ja — ¢| < ¢ will be satisfied. Justification

is given in (3.7), which is presented in the discussion that follows. Notice that in step
B3, we test the sign of sign[f (b)] - sign[f (¢)] rather than that of f () f(c) in order to
avoid the possibility of underflow or overflow in the multiplication of f(b) and f(c).

Find the largest root of

f)=x0-x—-1=0 (3.4)
accurate to within € = 0.001. With a graph, it is easy to check that 1 < a < 2. We
choose a = 1, b = 2; then f(a) = —1, f(b) = 61, and (3.3) is satisfied. The results of

the algorithm B1 to B3 are shown in Table 3.1. The entry # indicates that the associated
row corresponds to iteration number » of steps B1toB3. =

Table 3.1. Bisection Method for (3.4]

n a b c b—c f)
1 1.0000 2.0000 1.5000 0.5000 8.8906
2 1.0000 1.5000 1.2500 0.2500 1.5647
3 1.0000 1.2500 1.1250 0.1250 -0.0977
4 1.1250 1.2500 1.1875 0.0625 0.6167
5 1.1250 1.1875 1.1562 0.0312 0.2333
6 1.1250 1.1562 1.1406 0.0156 0.0616
7 1.1250 1.1406 1.1328 0.0078 -0.0196
8 1.1328 1.1406 1.1367 0.0039 0.0206
9 1.1328 1.1367 1.1348 0.0020 0.0004

10 1.1328 1.1348 1.1338 0.00098 —0.0096

74

Chapter 3 ROOTFINDING

3.1.1 Error Bounds

Let a,, b,, and ¢, denote the nth computed values of a, b, and c, respectively. Then
easily we get

1
hﬂ—%H=§&r%J nz=1 (3.5)
and it is straightforward to deduce fhat
1
b,, — Qp = 2"—__1(17 - a), n = 1 (36)

where b — a denotes the length of the original interval with which we started. Since the
root « is in either the interval [a,, ¢,] or [¢,, b,], we know that

1
Ja — cnl fcn"‘an=bn"'cn='2'(bn"an) 3.7

This is the error bound for ¢, that is used in step B2 of the earlier algorithm. Combining
it with (3.6), we obtain the further bound

1
o —cl = 2b—a) (3.8

This shows that the iterates ¢, converge to o as n — 0.
To see how many iterations will be necessary, suppose we want to have

]a - Cnl <€
This will be satisfied if
1
5@—@56

Taking logarithms of both sides, we can solve this to give

1 b—a
E.(._.f__) 39)

log2

nz=

For our example (3.4), this results in

1
log (—————)
0.001
> ——2 =997
- log2 99

Thus, we must have n = 10 iterates, exactly the number computed.

3.1 THE BISECTION METHOD 75

There are several advantages to the bisection method. The principal one is that
the method is guaranteed to converge. In addition, the error bound, given in (3.7), is
guaranteed to decrease by one-half with each iteration. Many other numerical methods
have variable rates of decrease for the error, and these may be worse than the bisection
method for some equations. The principal disadvantage of the bisection method is that
it generally converges more slowly than most other methods. For functions f(x) that
have a continuous derivative, other methods are usually faster. These methods may not
always converge; when they do converge, however, they are almost always much faster
than the bisection method.

MatLAB PROGRAM: An implementation of the bisection method. A function
bisect implementing the bisection method is given below. The comment statements
at the beginning of the programs should be self-explanatory with regard to the purpose
and use of the program. The form of the program is quite standard. The function £ is
given as an internal function, meaning that it is not recognizable to MATLAB programs
stored in files separate from this one. The program involves an internal printing of the
intermediate steps in the bisection method. This step can be omitted. At the conclusion
of the program, we print the final value of the root and the error bound for it.

Lacking in the program is any attempt to check whether the given error tolerance
ep is realistic for the length of the significand in the computer arithmetic being used.
‘This was left out to keep the program simple, but a realistic rootfinding program in a
computer library would need to include such a check. In MATLAB, such a test can be
constructed using the given machine constant eps.

function [root,error_bound] = bisect(al,b0,ep,max_iterate)

h

% function bisect(a0,b0,ep,max_iterate)

%

% This is the bisection method for solving an equation f(x)=0.

% .

% The function f is defined below by the user. The function f is
% to be continuous on the interval [a0,b0], and it is to be of

% opposite signs at a0 and b0. The quantity ep is the error

% tolerance. The parameter max_iterate is an upper limit on the
% number of iterates to be computed.

% This program guarantees ep as an error bound for the computed
% root provided: (1) the restrictions on the given function f

% and the initial [a0,b0] are satisfied; (2) ep is not too small
% when the machine epsilon is taken into account; and (3) the

% number of iterates computed is at most max_iterate. Only

% some of these conditions are checked in the program!

% For the given function f(x), an example of a calling sequence

76

Chapter 3 ROOTFINDING

% might be the following:
% [root,error_bound] = bisect(1,1.5,1.0E-6,10)

% The following is printed for each iteration the values of

% count, a, b, ¢, £(c), (b-a)/2

Y with ¢ the current iterate and (b-a)/2 the error bound for c.
% The variable count is the.index of the current iterate. Tap
% the carriage return to continue with the iteratiom.

if a0 >= b0
disp(’a0 < b0 is mot true. Stop!’)
return

end

format short e
a = al; b = b0;
fa = £(a); fb = £(b);

if sign(fa)*sign(fb) > 0
disp(’£(a0) and f(b0) are of the same sign. Stop!’)
return

end

c = (at+b)/2;
it_count = 0;
fprintf(’\n it_count a b c f(c) b-c\n’)
while b-c > ep & it_count < max_iterate
it_count = it_count + 1;
fc = £(c);
% Internal print of bisection method. Tap the carriage
% return key to continue the computation.
iteration = [it_count a b ¢ fc b-cl
if sign(fb)#*sign(fc) <=0
a=c;
fa = fc;
else
b = c;
fb = fc;
end
c = (atb)/2;
pause
end

format long
root = ¢

PROBLEMS

3.1 THE BISECTION METHOD 77

format short e
error_bound = b-c

T et I Tt T oot oo o To e ot ot fo T o e o
function value = f(x)
%

% function to define equation for rootfinding problem.

value = x.”6 - x - 1;

1. Use the bisection method with a hand calculator or computer to find the indicated
roots of the following equations. Use an error tolerance of € = 0.0001.

*(a) Therealrootof x® —x? —x —1=0.
(b) Therootof x =1+ 0.3cos(x).
., (©) The smallest positive root of cos(x) = % + sin(x).
(d) Therootof x =e¢™*.
(&) The smallest positive root of e™* = sin(x).
(f) Therealrootof x3 —2x —2 =0.
(g Allrealroots of x* —x —1=0.

2. To help determine the roots of x = tan(x), graph y = x and y = tan(x), and look
at the intersection points of the two curves.

(a) Find the smallest nonzero positive root of x = tan(x), with an accuracy of
€ = 0.0001.

Note: The desired root is greater than /2.
(b) Solve x = tan(x) for the root that is closest to x = 100.

"

3. Consider equation (3.2) with Py, = 1000, Py = 20,000, Niy = 30, and Ngy =
20. Find r with an accuracy of € = 0.0001.

4. Show that for any real constants ¢ and d, the equation x = ¢ 4 d cos(x) has at
least one root.

Hint: Find an interval [a, b]‘ on which f(x) = x — ¢ — d cos(x) changes sign.

5. To use the bisection method, implement the routine bisect or write another pro-
gram of your own design. Use it to solve the equations in Problems 1 and 2 with
an accuracy of € = 107>,

6. Using the bisection method and a graph of f(x), find all roots of

Fx) =32x% — 48x* +18x* — 1

78

Chapter 3 ROOTFINDING

10.

11.

12.

The true roots are

b1
(27 -~ 1)— P
cos[(Jj 1)12], i=12,...,6

Using the program of Problem 5, solve the equation

fFy=x>-3x2+3x~1=0

with an accuracy of € = 1078, Experiment with different ways of evaluating f(x);
for example, use (i) the given form, (ii) reverse its order, and (iii) the nested form

fE) =—-1+xB+x(-3+x))
Try various initial intervals [a, b], for example, [0, 1.5], [0.5, 2.0], and [0.5, 1.1].
Explain the results. Note that @ = 1 is the only root of f(x) = 0.
The polynomial
f(x) = x* — 5.4x% 4+ 10.56x* — 8.954x +2.7951
has a root « in [1, 1.2]. Repeat Problem 7, but vary the intervals [a, b] to reflect

the location of the root .

Let the initial interval used in the bisection method have length b — a = 3. Find
the number of midpoints ¢, that must be calculated with the bisection method to
obtain an approximate root within an error tolerance of 107°.

Consider the equatione™ = sin x. Find aninterval [a, b] that contains the smallest
positive root. Estimate the number of midpoints ¢ needed to obtain an approximate
root that is accurate within an error tolerance of 10710,

Let « be the smallest positive root of
fx)=1—-x+sinx=0

Find an interval [a, b] containing « and for which the bisection method will con-
verge to . Then estimate the number of iterates needed to find o within an
accuracy of 5 x 1073,

Let o be the unique root of
3

TR

Find an interval [a, b] containing « and for which the bisection method will con-
verge to o. Then estimate the number of iterates needed to find « within an
accuracy of 5 x 107%.

3.2 NEWTON'S METHOD 79

13. Let « be the largest root of
fX) =€ —x—-2=0
Find an interval [a, b] containing & and for which the bisection method will con-

verge to «. Then estimate the number of iterates needed to find ¢ within an
accuracy of 5 x 1078,

14. Imagine finding aroot « satisfying 1 < & < 2. If you are using a binary computer
with m binary digits in its significand, what is the smallest error tolerance that
makes sense in finding an approximation to ? If the original interval [a,b] =
[1, 2], how many interval halvings are needed to find an approximation cpto o
with the maximum accuracy possible for this computer?

15. Let f(x) = 1 — zx for some z > 0. Solving f(x) = O is equivalent to calculating
1/z, thus doing a division.

(a) Give an interval [a, b], or a way to calculate it, guaranteed to contain 1/z.
Do not use division in calculating or defining [a, b].

(b) Assume 1 < z < 2. By using some interval enclosing 1/z, give the number
of subdivisions n needed to obtain an estimate of 1/z within an accuracy of
275,

(¢c) For a general z > 0, consider calculaﬁng 1/z in the single i)recision arith-
metic of the IEEE standard floating-point arithmetic. Using the bisection
method, give a way to calculate 1/z to the full accuracy of the arithmetic.

3.2. NEWTON’S METHOD

Consider the sample graph of y = f(x) shown in Figure 3.1. The root & occurs where
the graph crosses the x-axis. We willﬁusually have an estimate of «, and it will be
denoted here by xo. To improve on this estimate, consider the straight line that is tangent
to the graph at the point (xo, f(xg)). If xg is near ¢, this tangent line should be nearly
coincident with the graph of y = f (x) for points x about &. Then the root of the tangent
line should nearly equal .. This root is denoted here by x;.

To find a formula for x;, consider the equation of the line tangent to the graph
of y = f(x) at (xo, f(x0)). It is simply the graph of y = pi1(x) for the linear Taylor
polynomial

P1(x) = f(x0) + F'(x0) (x — x0)

By definition, x; is the root of p;(x). Solving

fxo) + f'(xo) (x1 — xp) =0

80

Example 3.2.1

Chapter 3 ROOTFINDING

(g far)

\g
ay
&

Y
*

Figure 3.1. The schematic for Newton’s method

leads to

_ fx0)
' (x0)

X1 = Xg (3.10)

Since x; is expected to be an improvement over xo as an estimate of «, this entire
procedure can be repeated with x; as the initial guess. This leads to the new estimate

Xy = — S x)
S(x1)
Repeating this process, we obtain a sequence of numbers X1, X2, X3, ... that we hope will

approach the root «. These numbers are called iterates, and they are defined recursively
by the following general iteration formula:

_ f(xn)
)’

This is Newton's method for solving f (3c) = 0. Itis also called the Newton—Raphson
method.

Xn41 = Xp

n=0,1,2,... (3.11)

Using Newton’s method, solve equation (3.4), which was used earlier in Example 3.1.1
to illustrate the bisection method. Here,

f@=x-x-1, flx)=6x"—1

Example 3.2.2

3.2 NEWTON’S METHOD 81

Table 3.2. Newton’s Method forx6 —x —1=0

n Xn S (%) Xn = Xp-1 o =X,
0 15 8.80E+1

1 1.30049088 2.54E + 1 —~2.00E — 1 ~3.65E—1
2 1.18148042 538E-1 —~1.19E —- 1 —1.66E — 1
3 1.13945559 4.92E -2 —4.20E -2 —4.68E — 2
4 1.13477763 5.50E — 4 —4.68E — 3 ~4.73E -3
5 1.13472415 711E-8 —5.35E -5 —535E -5
6 1.13472414 1.55E—15 —6.91E -9 —6.91E~9

and the iteration is given by

x8—x, — 1

Xn4+1 = Xp — 61 — 1
n

, n>0 (3.12)

We use an initial guess of xg = 1.5. The results are shown in Table 3.2. The column
“Xp — X,—1” is an estimate of the error o — x,_1; justification for this is given later in
the section.

The true root is o = 1.134724138, and x4 equals « to nine significant digits. Com-
pare this with the earlier results shown in Table 3.1 for the bisection method. Observe
that Newton’s method may converge slowly at first. As the iterates come closer to the
root, however, the speed of convergence increases, as is shown in the table. =

We now consider a procedure that was used to carry out division on some early computers.
These computers had hardware arithmetic for addition, subtraction, and multiplication,
but division had to be implemented by software. The following iteration (3.14) is also
used on some present-day supercomputers.

Suppose we want to form a/b. It can be done by multiplying a and 1/b, with the
latter produced approximately by using Newton’s method. A necessary part of this is
that we need to find 1/b. To do this, we solve

fx)=b-— % =0 (3.13)

»

where we assume b > 0. The root is & = 1/b. The derivative is

, 1
f(x)=;§

82

Chapter 3 ROOTFINDING

and Newton’s method is given by

Simplifying, we get

Xnt1 = Xn(2 — bxp), n=0 (3.14)
This involves only multiplication and subtraction and, thus, there is no difficulty in
implementing it on the computers discussed previously. The initial guess, of course,
should be chosen with xg > 0. For the error, it can be shown that

Rel(x,41) = [Rel(x,)]?, n>0 (3.15)

where

o — Xy

Rel(x,) =

the relative error when considering x, as an approximation to o = 1/b. From (3.15),
we must have '

|[Rel(xp)] < 1

Otherwise, the error in x,, will not decrease to zero as »n increases. This condition means

1

b

-1 < <1

1
b
and this reduces to the equivalent condition
2
0<x < 3 (3.16)

The iteration (3.14) converges to & = 1/b if and only if the initial guess x, satisfies
(3.16). Figure 3.2 shows a sample case. From Figure 3.2, it is fairly easy to justify
(3.16), since if it is violated, the calculated value of x; and all further iterates would be
negative. :

The result (3.15) shows that the convergence is very rapid, once we have a somewhat
accurate initial gness. For example, suppose [Rel(xg)| = 0.1, which corresponds to a

e g BE

3.2 NEWTON’S METHOD » 83

/b 2/b

(g)

Figure 3.2. The iterative solution of b — 1/x =0

10% error in xg. Then from (3.15),

Rel(x;) = 1072, Rel(x;) = 1074, 3.17)
Rel(x;) = 1078, Rel(xy) = 10716 ’

-

Thus, x3 or x4 should be sufficiently accurate for most purposes.

3.2.1 Error Analysis

Assume f(x) has at least two continuous derivatives for all x in some interval about the
root . Further assume that ’

Fey#o (3.18)

This says that the graph of y = f(x) is not tangent to the x-axis when the graph intersects
it at x = «. The case in which f/(a) = 0 is treated in Section 3.5. Also, note that
combining (3.18) with the continuity of f’(x) implies that f'(x) 3 O for all x near .

84

Example 3.2.3

Chapter 3 ROOTFINDING

Use Taylor’s theorem to write
F@) = fn) + (@ = x2) f' () + 50 — %) f"(Cn)

with ¢, an unknown point between « and x,. Note that (o) = 0 by assumption, and
then divide f’(x,) to obtain

PG P 4)

0=
J'(xn) 2f"(xn)

From (3.11), the first term on the right side is x, — x4, and we have

f"(cn)
0= n — Xn — Xn — Xn 2
Xp — Xn+1 + 0 — X, + (@ — X,) 27 Con)
Solving for & — x,1, we have
_ o [=f"(cn)
o = Xpy1 = (@ = %) [2 f,(xn)} (3.19)

This formula says that the error in x,; is nearly proportional to the square of the
error in x,. When the initial error is sufficiently small, this shows that the error in the
succeeding iterates will decrease very rapidly, just as in (3.17). Formula (3.19) can aiso
be used to give a formal mathematical proof of the convergence of Newton’s method,
but we omit it.

For the earlier iteration (3.12), f”(x) = 30x*. If we are near the root «, then

'"f”(cn) ~ "’f”(a) _ —30c* -
2 2f@ el =D -

Thus for the error in (3.12),
o — Xpy1 X —2.42(a — X,)° (3.20)

This explains the rapid convergence of the final iterates in Table 3.2. For example,
consider the case of n = 3, with @ — x3 = —4.73E — 3. Then (3.20) predicts

@ —x4=—242(473E—3)2 = ~542E—5

which compares well to the actual error of & — x4 = —5.35E — 5.

If we assume that the iterate x, is near the root «, the multiplier on the right of
(3.19) can be written as

e O R s

3.2 NEWTON’S METHOD 85

—fen) | —f"(@)

e 2@ - e
Thus,
Q= Xpp1 X M(a—x,)%, 120 (3.22)
Multiply both sides by M to get |
M(a = xni1) % [M(a — %) (3.23)

Assuming that all of the iterates are near «, then inductively we can show that
M@ —x) ~[M(@—-x)*, n=0
Since we want ¢ — x,, to converge to zero, this says that we must have

|M (e — x0)| <1
1 l2f’(0t)

o =2l < 57 = | T

(3.24)

If the quantity | M| is very large, then xo will have to be chosen very close to « to obtain
convergence. In such situations, the bisection method is probably an easier method to
use. An example of this situation is given in Problem 5.

The choice of xo can be very important in determining whether Newton’s method
will converge. Unfortunately, there is no single strategy that is always effective in
choosing xp. In most instances, a choice of x arises from the physical situation that
led to the rootfinding problem. In other instances, graphing y = f (x) will probably be
needed, possibly combined with the bisection method for a few iterates.

-

3.2.2 Error Estimation

We are computing a sequence of iterates x,,, and we would like to estimate their accuracy
to know when to stop the iteration. To estimate o — x,, note that, since- f (&) = 0, we
have

) = f@xn) = f@) = f'(E)(xn — @)

for some &, between x, and «, by the mean-value theorem. Solving for the error, we
obtain

—f(xn) ~ — f(xn)
J'(&n) S (xn)

o —X, =

86

Example 3.2.4

Chapter 3 ROOTFINDING

provided that x, is so close to & that f'(x,) = f'(§,). From (3.11), this becomes
o — Xy A Xpgl — Xn (3.25)

This is the standard error estimation formula for Newton’s method, and it is usually fairly
accurate. However, this formula is not valid if f'(a) = 0, a case that is discussed in
Section 3.5 of this chapter.

Consider the error in the entry x3 of Table 3.2.

o—x3=—4T3E-3
xe—x3 = —4.68E — 3 (3.26)
This illustrates the accuracy of (3.25) for that case.

MATLAB PROGRAM: An implementation of Newton’s method. The function
newton is an implementation of Newton’s method, with error estimation and a safeguard
against an infinite loop. The input parameter max_iterate is an upper limit on the
number of iterates to be computed; this prevents the occurrence of an infinite loop.

function root = newton(x0,error_bd,max_iterate)

h

Y function newton(x0,error_bd,max_iterate)

)

% This is Newton’s method for solving an equation f(x) = 0.
h

% The functions f(x) and deriv_f(x) are given below.

% The parameter error_bd is used in the error test for the
% accuracy of each iterate. The parameter max_iterate

% is an upper limit on the number of iterates to be

% computed. An initial guess x0 must also be given.

o

h

% For the given function f(x), an example of a calling sequence
% might be the following:

% root = newton(1,1.0E-12,10)

% The program prints the iteration values

% iterate_number, x, f(x), deriv_f(x), error

% The value of x is the most current initial guess, called

% previous_iterate here, and it is updated with each iteratiom.
% The value of error is

% error = newly_computed_iterate - previous_iterate

% and it is an estimated error for previous_iterate.

% Tap the carriage return to continue with the iteration.

3.2 NEWTON'S METHOD 87

format short e

error = 1;

it_count = 0;

fprintf(’\n it_count x f£(x) df(x) error \n’)

while abs(error) > error_bd & it_count < max_iterate
fx = £(x0);
dfx = deriv_f(x0);
if dfx ==
disp(’The derivative is zero. Stop’)
return
end
x1 = x0 - fx/dfx;
error = x1 - x0;
% Internal print of the Newton method. Tap the carriage
% return key to continue the computation.
iteration = [it_count x0 fx dfx error]
pause
x0 = x1;
it_count = it_count + 1;
end

if it_count >= max_iterate
disp(’The number of iterates calculated exceeded’)
disp(’max_iterate. An accurate root was not’)
disp(’calculated.’)
else
format long
root = x1
format short
end

TotoTotohtotoTo oo o Tototo o Tt to ot o ot
function value = f(x)

% .
% function to define equation for rootfinding problem.
%

value = x.”6 - x - 1;

o lototoTotatotoloto o Totode fo oo totato o ah o ool .
function value = deriv_f (x)

0/° .

% Derivative of function defining equatiom for
% rootfinding problem.

h

value = 6*%x.°5 - 1;

88

PROBLEMS

Chapter 3 ROOTFINDING

1.

Carry out the Newton iteration (3.12) with the two initial guesses xo = 1.0 and
xp = 2.0. Compare the results with Table 3.2.

Using Newton’s method, find the roots of the equations in Problem 1, Section 3.1
(in this chapter). Use an error tolerance of € = 107S.

(a) On most computers, the computation of /a is based on Newton’s method.
Set up the Newton iteration for solving x? — a = 0, and show that it can be
written in the form

1 a
xn+1=‘2‘ Xpn+—1), HZO

(b) Derive the error and relative error formulas

1 2
Vi = s =~ (V3 %)

n

Rel(x,,+1) = —‘g [Rel(xn)]2

Hint: Apply (3.19).
(¢) For xg near /a, the last formula becomes

1
Rel(ine) ~ =3[Rl n 20

Assuming Rel(xp) = 0.1, use this formula to estimate the relative error in
X1, X2, X3, and x4.

Give Newton’s method for finding %/a, witha > 0 and m a positive integer. Apply
it to finding /2 form = 3,4, 5, 6, 7, 8, say, to six significant digits.

Hint: Solve x™ —a = 0.
(a) Repeat Problem 2 of Section 3.1, for finding roots of x = tan(x). Use an
error tolerance of € = 107°,

(b) The root near 100 will be difficult to find by using Newton’s method. To
explain this, compute the quantity M of (3.21), and use it in the condition
(3.24) for xy.

The equation
fxy=x+ e~B* cos(x) =0, B>0

has a unique root, and it is in the interval (—1, 0). Use Newton’s method to find
it as accurately as possible. Use values of B =1, 5, 10, 25, 50. Among your
choices of xg, choose xg = 0, and explain the behavior observed in the iterates for
the larger values of B.

Hint: Draw a graph of f(x) to better understand the behavior of the function.

3.2

10.

11.

12.

13.

NEWTON’S METHOD 89

Check the accuracy of the error approximation (3.25) for all entries in- Table 3.2,
as was done in (3.26).

Use the iteration (3.14) to compute 1/3. Use xo = 0.2. Give the error in x1, X3,
X3, X4.

Derive formula (3.15). Using it, show Rel(x,) = [Rel(x)]%".

Hint: Use

o — Xpiq1

Rel(xpy1) = =1 bxp4

Replace x,1 using (3.14), and then compare the result to [Rel(x,)]2.

Solve the equation
¥ =3x*+3x—-1=0

on a computer and use Newton’s method. Recalling Problem 7 of Section 3.1,
experiment with the choice of initial guess x. Also experiment with different
ways of evaluating f(x) and f/(x). Note any unusual behavior in the iteration.

Repeat Problem 10 with the equation
x* —5.4x% +10.56x2 — 8.954x +2.7951 = 0

Look for the root « located in [1, 1.2].

Recall the material of Section 1.3 on the nested evaluation of polynomials. In
particular, recall (1.35)-(1.38) and Problem 8 in that section. Using this, write
a Newton program for finding the roots of polynomials p(x), employing this
earlier material to efficiently evaluate p and p’. Apply it to each of the following
polynomial equations, finding its largest positive root:

(@ x*-x?—x—-1=0. (b) 32x% —48x* +18x2 -1 =0.

Note that the polynomial g (x) referred to in (1.37)—(1.38) satisfies p(x) = (x —
a)q(x) at the root . Thus, g(x) can be used to obtain the remaining roots of
p(x) = 0. This is called polynomial deflation.

Consider applying Newton’s method to find the root = 0 of sin(x) = 0. Find an
interval [—r, r] for which the Newton iterates will converge to «, for any choice
of xg in [—r, 7]. Make r as large as possible.

Hint: Draw a graph of y = sin(x) and graphic'ally interpret the placement of xg
and x 1-

90 Chapter 3 ROOTFINDING

3.3. SECANT METHOD

The Newton method is based on approximating the graph of y = f(x) with a tangent
line and on then using the root of this straight line as an approximation to the root o of
£ (x). From this perspective, other straight-line approximations to y = f (x) would also
lead to methods for approximating a root of f(x). One such straight-line approximation
leads to the secant method.

Assume that two initial guesses to @ are known and denote them by xo and x1. They
may occur on opposite sides of o, as in Figure 3.3, or on the same side of o, as in Figure
3.4. The two points (xo, f (o)) and (x1, f(x1)), on the graphof y = f (x), determine a
straight line, called a secant line. This line is an approximation to the graphof y = f (x),
and its root x is an approximation of «.

To derive a formula for x,, we proceed in a manner similar to that used to derive
Newton’s method: Find the equation of the line and then find its root x,. The equation
of the line is given by

) =) = Flo) + (x —) - LD TG0

X1 — Xo
Solving p(x;) = 0, we obtain
X1 — Xo
xp = x1 — fx1) —————
2=0 = SO e T o)

Having found x,, we can drop xo and use x1, X, as a new set of approximate values for
«. This leads to an improved value x3; and this process can be continued indefinitely.

y =f(x)

(0. fxg))

. (xpf(xl))

Figure 3.3. A schematic of the secant method: x; <& < x

Example 3.3.1

3.3 SECANT METHOD 91

Figure 3.4. A schematic of the secant method: « < x; < x,

Doing so, we obtain the general iteration formula

—) S
Xnt1 = Xn — f(x,) o) — f(-xn—l)’ n>1 (3.27)

This is the secant method. It is called a two-point method, since two approximate values
are needed to obtain an improved value. The bisection method is also a two-point
method, but the secant method will almost always converge faster than bisection.

‘We solve the equation

fO=x-x-1=0

which was used previously as an example for both the bisection and Newton methods.
The results are given in Table 3.3, including the quantity x, — x,_; as an estimate of
o — x,_1. The iterate xg equals o rounded to nine significant digits. As with the Newton
method (3.12) for this equation, the initial iterates do not converge rapidly. But as the
iterates become closer to «, the speed of convergence increases. =

»

3.3.1 Error Analysis

By using techniques from calculus and some algebraic manipulation, it is possible to
show that the iterates x,, of (3.27) satisfy

92

Chapter 3 ROOTFINDING

Table 3.3. Secant Method for x® —x —1=0

n Xn Sfxn) Xp = Xp—1 o — Xp-1
0 2.0 61.0

1 1.0 -1.0 -1.0

2 1.01612903 - —9.15E—1 1.61E—2 135E—1
3 1.19057777 6.57E —1 1.74E — 1 1.I9E —1
4 1.11765583 ~1.68E — 1 —7.29E -2 ~5.59E — 2
5 1.13253155 —2.24E -2 1.49E — 2 1.71E -2
6 1.13481681 9.54E — 4 2.29E - 3 2.19E - 3
7 1.13472365 ~507TE—6 —932E -5 ~927E -5
8 1.13472414 -1.13E-9 492E -7 492E -7

:f_ﬂ(ﬁ] (3.28)

2f"(%n)

The unknown number ¢, is between x,, and x,—;, and the unknown number &, is between
the largest and the smallest of the numbers «, x,, and x,_;. The error formula closely
resembles the Newton error formula (3.19). This should be expected, since the secant
method can be considered as an approximation of Newton’s method, based on using

g £ =) 529
Xp — Xp—1

o — Xpy1 = (@ — X,) (@ — Xp—1) |:

Check that the use of this in the Newton formula (3.11) will yield (3.27).
The formula (3.28) can be used to obtain the further error result that if xo and x;
are chosen sufficiently close to «, then we have convergence and

r—1

lo —xpp1l | f7() _
n—soo | — x,|" | 2f"(et) = (3.30)
where 7 = (v/3 + 1)/2 = 1.62. Thus,
lot — Xp1] & c o — x|V (3.31)

as x, approaches «. Compare this with the Newton estimate (3.22), in which the exponent
is 2 rather than 1.62. Thus, Newton’s method converges more rapidly than the secant
method. Also, the constant ¢ in (3.31) plays the same role as M in (3.22), and they are
related by

c=|MI""!

The restriction (3.24) on the initial guess for Newton’s method can be replaced by a
similar one for the secant iterates, but we omit it. Finally, the result (3.31) can be used

Example 3.3.2

3.3 SECANT METHOD ' 93

to justify the error estimate
O — Xpy N Xy — Xpog (3.32)

for iterates x,, that are sufficiently close to the root.

For the iterate x5 in Table 3.3,

o —x5 =219E ~ 3
Xg—x5=229E -3 g (3.33)

MATLAB PROGRAM: An implementation of the secant method. The function
secant is an implementation of the secant method, with error estimation and a safeguard
against an infinite loop. The input parameter max_iterate is an upper limit on the
number of iterates to be computed; this prevents the occurrence of an infinite loop.

function root = secant (x0,x1,error_bd,max_iterate)
% function secant(x0,x1,error_bd,max_iterate)

% This implements the secant method for solving an
% equation f(x) = 0.

% The parameter error_bd is used in the error test for the
% accuracy of each iterate. The parameter max_iterate is
% an upper limit on the number of iterates to be computed.
% Two initial guesses, x0 and x1, must also be given.

% For the given function £(x), an example of a calling
% sequence might be the following:

% root = secant(x0,x1,1.0E-12,10)

% The function f(x) is given below.

% The program prints the iteration values

% iterate_number, x, f(x), error

% The value of x is the most current initial guess, called
% previous_iterate here, and it is updated with each

% iteration. The value of error is .

yA error = newly_ computed_iterate - previous_iterate
% and it is an estimated error for previous_iterate.

% Tap the carriage return to continue with the iteration.

format short e

94 Chapter 3 ROOTFINDING

error = 1;

£x0 = £(x0);

it_count = 0;

iteration = [it_count x0 fxO]

while abs(error) > error_bd & it_count <= max_iterate
it_count = it_count + 1;
fx1 = £(x1); '
if fx1 - £x0 == 0
disp(’£(x1) = £(x0); Division by zero; Stop’)
return
end
x2 = x1 - fx1x(x1-x0)/(fx1-£x0);
error = x2 - xl;
% Internal print of secant method. Tap the carriage
% return key to continue the computation.
iteration = [it_count x1 fx1 error]

pause
x0 = x1;
x1l = x2;
£x0 = fx1;
end

if it_count > max_iterate
disp(’The number of iterates calculated exceeded’)
disp(’max_iterate. An accurate root was not’)
disp(’calculated.’)

else
format long

: root = x2
format short

end

bbb Tt T o oo oroTooto ot Fo oo oo

function value = f(x)

%

{{ % function to define equation for rootfinding problems.
(& °/o .

i value = x.”6 - x - 1;

3.3.2 Comparison of Newton and Secant Methods

From the foregoing discussion, Newton’s method converges more rapidly than the secant
method. Thus, Newton’s method should require fewer iterations to attain a given error
tolerance. However, Newton’s method requires two function evaluations per iteration,

3.3 SECANT METHOD 95

that of f(x,) and f’(x,). And the secant method requires only one evaluation, f(x,),
if it is programed carefully to retain the value of S (xn-1) from the preceding iteration.
Thus, the secant method will require less time per iteration than the Newton method.

The decision as to which method should be used will depend on the factors just
discussed, including the difficulty or expense of evaluating f’(x,); and it will depend on
intangible human factors, such as convenience of use. Newton’s method is very simple
to program and to understand; but for many problems with a complicated f'(x), the
secant method will probably be faster in actual running time on a computer.

General Remarks The derivations of both the Newton and secant methods illustrate
a general principle of numerical analysis. When trying to solve a problem for which
there is no direct or simple method of solution, approximate it by another problem that
you can solve more easily. In both cases, we have replaced the solution of f)=0
with the solution of a much simpler rootfinding problem for a linear equation. This is
another example of General Observation (1.10) given near the end of Section 1.1. The
nature of the approximation being used also leads to the following observation:

GENERAL OBSERVATION:

When dealing with problems involving differentiable
functions f(x), move to a nearby problem by
approximating each such f(x) with a linear function.

(3.34)

The linearization of mathematical problems is common throughout applied mathematics
and numerical analysis.

3.3.3 The MatrLAB Function fzero

MATLAB contains the rootfinding routine fzero that uses ideas involved in the bisection
method and the secant method. As with many MATLAB programs, there are several
possible calling sequences. The command

root=fzero(f_name, [a,b])
produces a root within [a, b], where it is assumed that f(a) f(®) < 0. The command
root=fzero (f_name,x0)

tries to find a root of the function near x0. The default error tolerance is the maximum
precision of the machine, although this can be changed by the user. This is an excellent
rootfinding routine, combining guaranteed convergence with high efficiency.

96 Chapter 3 ROOTFINDING

PROBLEMS 1. Using the secant method, find the roots of the equations in Problem 1 of Section
3.1. Use an error tolerance of € = 1075.

2. Solve equation (3.2) with Py, = 1000, Pyy = 20,000, Ny, = 30, and Ny = 20.
Find r with an accuracy of € = 0.0001.

3. Solve Problem 6 of Section 3.2, using the secant method. As one choice of initial
guesses, use xg = —1, x; = 0. .

4. Continuing Example 3.3.1, experimentally confirm the error estimate (3.31). For
this purpose, first compute the constant ¢ by the formula (3.30). Then for n =
2, ..., 7, compute and compare both sides of the error estimate (3.31).

5. Using the secant method, repeat Problem 7 of Section 3.1 and Problem 10 of
Section 3.2.

6. Using the secant method, repeat Problem 11 of Section 3.2.

7. As apartial step toward showing (3.28), use algebraic manipulation to show

f[xn~17 Xn, (X]

O = Xntl = _(Ol - xn)(a - xn——l) f[xn—l,Xn]
where
fla, bl = _f;g_b_l%___f_(ﬁll
—-a
fla,b,c]l = f1b.cl = fla. b
c—a

These quantities are called Newton divided differences, and they are discussed
in Section 4.1. The formula (4.24), applied to the above error formula, leads to
(3.28).

8. Write formula (3.28) as
o = Xnp1 N Mo — X2) (@ — Xp-1), n=0
with M defined in (3.21). Then multiply both sides by M, obtaining

|M (o — xn)| & | M (0 = xn)| [M (@ — Xn—1)]

Let B, = |M(a — x,)|, n = 0. To have x, converge to ¢z, we must have B, con-
verge to 0. The above formula yields

By = B,B, 1

For simplicity, assume By = B; = 6.
(a) Compute approximate values of By, B3, B4, Bs, Bs, By in terms of é.

3.4 FIXED POINT ITERATION 97

(b) If we write B, = §%, n > 0, give a formula for gn+1 in terms of g,_; and
q». What are g and ¢;?

(c) Experimentally, confirm that

1 1
~ PR R 1.618)"+!
o N5 «/5()

for larger values of #, say, n > 4. The number r was used in (3.30). The
numbers {g,} are called Fibonacci numbers. The number r is called the
golden mean (some authors define the golden mean to be » — 1). For a more
detailed derivation, see Atkinson (1989, pp- 68-69).

(d) Using (c), show that

Bn+l

B;

is approximately constant. Find the constant. This result can be used to
construct a proof of (3.30). '

3.4. FIXED POINT ITERATION

The Newton method (3.11) and the secant method (3.27) are examples of one-point
and two-point iteration methods, respectively. In this section, we give a more general
introduction to iteration methods, presenting a general theory for one-point iteration
formulas.

As a motivational example, consider solving the equation

x2—-5=0 (3.35)

«

for the root @ = +/5 = 2.2361. We give four iteration methods to solve this equation.

2

M. x,p1=5+=x, - x;

5
I2. xpp=—

1
I3, xp41=1+x, — —S—x,f

. 1 5
14. Xp41 = 5 (x,, -+ _)

n

All four iterations have the property that if the sequence {x, | n > 0} has a limit o, then
« is a root of (3.35). For each equation, check this as follows: Replace x,, and x,,; by
@, and then show that this implies & = 4+/5. In Table 3.4, we give the iterates x, for

- these four iteration methods. To explain these numerical results, we present a general
theory for one-point iteration formulas.

98

Lemma 3.4.1

Theorem 3.4.2

Chapter 3 ROOTFINDING

Table 3.4. TIterations Il to 14

n x, 2 11 X, 212 x, 13 x, 14
0 25 2.5 2.5 2.5
1 1.25 2.0 2.25 2.25
2 4.6875 2.5 2.2375 2.2361
3 -12.2852 2.0 ©2.2362 2.2361

The iterations I1 to I4 all have the form
Xni1 = 8(Xn) (3.36)

for appropriate continuous functions g(x). For example, with I1, gx)=54+x— x2 If
the iterates x, converge to a point o, then

lim x,41 = lim g(x,)
n—oco n—ecQ
a = g(a)

Thus, « is a solution of the equation x = g(x), and « is called a fixed point of the func-
tion g.

In this section, a general theory is given to explain when the iteration x,4.; = g(x,)
will converge to a fixed point of g. We begin with a lemma on the existence of solutions
of x = g(x). ‘

Let g(x) be a continuous function on an interval [a, b], and suppose g satisfies the
property

a<x<bhb = a<gx)<bh (3.37)
Then the equation x = g(x) has at least one solution « in the interval [a, b].

Proof. Define the function f(x) = x — g(x). Tt is continuous for a < x < b. More-
over, f(a) <0 and f(b) > 0. By the intermediate value theorem (see Appendix A),
there must be a point x in [a, b] for which f(x) = 0. We usually denote this value of x
bya. = ’

See Figure 3.5 for a graphical interpretation of the solution of x = g(x). The
solutions « are the x-coordinates of the intersection points of the graphs of y = x and

y = g(x).

(Contraction mapping theorem) Assume g(x) and g’(x) are continuous fora < x < b,
and assume g satisfies (3.37). Further assume that

3.4 FIXED POINT ITERATION 99

/

Figure 3.5. An example of Lemma 3.4.1

A= max [g'(x)] <1 (3.38)
a<x<b

Then

S1. There is a unique solution « of x = g(x) in the interval [a, b].
S2. For any initial estimate xo in [a, b], the iterates x, will converge to .
S3.

n

o — x| <

Sy Wo—ml, n2z0 (3.39)

S4.)

im 275 _ oy (3.40)

n—=>00 o — Xy

Thus for x, close to «,

o = Xny1 = g () (@ — xp) ' (3.41)

Proof. There is some useful information in the proof, so we go through most of the
details of it. Note first that the hypotheses on g allow us to use Lemma 3.4.1 to assert
the existence of at least one solution to x = g(x). In addition, using the mean value
theorem (see Appendix A), we have that for any two points w and z in [a, b],

g(w) —g(2) =g'(©)(w —2)

100

Chapter 3 ROOTFINDING

for some ¢ between w and z. By using (3.38), we obtain

lg(w) — g@)| = |g'©]|lw -1zl
< Alw—12| a<w,z<b (342)

S1. Suppose there are two solutions, denoted by « and 8. Then o = g(@) and
B = g(B). By subtracting these, we find that

a—p=gl)—gp)
Take absolute values and use (3.42):

lo — Bl < Al — Bl
1=2)lae—pl<0

Since A < 1, we musthave o = f; and thus, the equation x = g(x) has only one solution
in the interval [a, b].

S2. From the assumption (3.37), it can be shown that for any initial guess xp in
[a, b], the iterates x, will all remain in [a, b]. For example, if a < xp = b, then (3.37)
impliesa < g(xg) < b. Sincex; = g(xo), this shows x; isin [a, b]. Repeat the argument
to show that x; = g(x;) is in [a, b}, and continue the argument inductively.
To show that the iterates converge, subtract x,4+1 = g(xy,) from a = g(a), obtaining

& — Xppl = g(ot) - g(xn)

= /(e (@ —xn) G4
for some ¢, between o and x,,. Using the assumption (3.38), we get
lo — xp1l S Ml@—x|, nz=0 (3.44)
Inductively, we can then show that |
low — xa| < A"t —x0), n=0 (3.45)

Since A < 1, the right side of (3.45) goes to zero as n —> 09, and this then shows that
X, — oL asn —> oQ.

S3. Use (3.44) with n = 1 to obtain

la — xo| < la — x1] + |x1 — xol
_ < Mo — xol + |x1 — xol
(1= A) o — xol < |x1 — xol

la — x| < lx1 — Xol (3.46)

1—-A

Combine this with (3.45) to conclude the derivation of (3.39).

Corollary 3.4.3

3.4 FIXED POINT ITERATION 101

S4. Use (3.43) to write .

o—x
lim —* = lim ¢'(c,)

n—>c0 (o — X, n—-»00

Each c, is between « and x,,, and x, — «, by S2. Thus, ¢, — «. Combine this with the
continuity of the function g’(x) to obtain

lim g'(c,) = g’ (@)
n—»co
thus proving (3.40).

We need a more precise way to deal with the concept of the speed of convergence
of an iteration method. We say that a sequence {x, | n > 0} converges to a with an order
of convergence p > 1 if

lo — Xpp1] < cla = x,|7, n>0

for some constant ¢ > 0. The cases p =1, p = 2, and p = 3 are referred to as linear
convergence, quadratic convergence, and cubic convergence, respectively. Newton’s
method usually converges quadratically; and the secant method has order of convergence
p = (14++/5)/2. For linear convergence, we make the additional requirement that
¢ < 1; as otherwise, the error & — x,, need not converge to zero.

If I g (a)| < 1in the preceding theorem, then formula (3.44) shows that the iterates
X, are linearly convergent. If in addition, g’(ar) # 0, then formula (3.41) proves the
convergence is exactly linear, with no higher order of convergence being possible. In
this case, we call the value of [g’ (a)] the linear rate of convergence.

In practice, Theorem 3.4.2 is seldom used directly. The main reason is that it is
difficult to find an interval [a, b] for which (3.37) is satisfied. Instead, we look for a way
to use the theorem in a practical way. The key idea is the result (3.43), which shows
how the iteration error behaves when the iterates X, are near «.

Assume that g(x) and g’(x) are continuous for some interval ¢ < x < d , with the fixed
point o contained in this interval. Moreover, assume that

|g'@)] <1 (3.47)

Then, there is an interval [a, b] around « for which the hypotheses, and hence also
the conclusions, of Theorem 3.4.2 are true. And if to the contrary, |g’(«)| > 1, then the
iteration method x,,41 = g(x,) will not converge to . [When] g'(@)] = 1, no conclusion
can be drawn; and even if convergence were to occur, the method would be far too slow
for the iteration method to be practical.]

The proof of this is taken up in Problem 10. Using this result, we can examine the
iteration methods I1 to I4. Recall a = /5.

102

Example 3.4.4

Chapter 3 ROOTFINDING

IL gx)=5+x—2x2, gx) =1-2x, g'(@)=1-2v5< —1. Thus, the itera-
tion I1 will not converge to +/5.

I2. g(x)=5/x, gx)=-5/x? g'(a)=—1. We cannot conclude that the itera-
tion converges or diverges. But from Table 3.4, it is clear that the iterates will not
converge to .

B. g =1+x—1x% g =1-%x, g)=1-3%/5=0.106. From the
corollary, the iteration will converge. And from (3.40),

lt — xpp1] A 0.106 |o — x|

when x, is close to a. The errors decrease by approximately a factor of 0.1 with
each iteration.

M. gx) =L1(x+5/x), g(x)=3(01-5/x*, g()=0. Thus, the condition for
convergence is easily satisfied. Note that this is Newton’s method for computing

V5.

It is often difficult to know how to convert a rootfinding problem f(x) = O into a
fixed point problem x = g(x) that leads to a convergent method. One such process is
given in Problem 9, and it makes essential use of Corollary 3.4.3.

The possible behavior of the fixed point iterates x, is shown graphically in Figure
3.6, for various sizes of g’(at). To see the convergence, consider the case of x; = g(xo),
the height of the graph of y = g(x) at xo. We bring the number x; back to the x-axis by
using the line y = x and the height y = x;. We continue this with each iterate, obtaining
a stairstep behavior when g'(e) > 0. When g’(«) < 0, the iterates oscillate around the
fixed point &, as can be seen in Figure 3.6.

In Table 3.5, we give results from the iteration I3, along with more information on the
convergence of the iterates. The errors are given, along with the ratios

Fp = ST (3.48)

O — Xp-1

Empirically, the values of r, converge to g’ (o) = 0.105573, which agrees with (3.40). =

3.4.1 Aitken Error Estimation and Extrapolation

With the formula (3.41), it is possible to estimate the error in the iterates x, and to
accelerate their convergence. Let g’(«) be denoted by A. Then we assume that (3.41)
holds true for all n of interest, and we write it with » replaced by n — 1:

3.4 FIXED POINT ITERATION 103

O<glay<l -l<g'@)<0

A
y=g(x)
y=x
I |
| |
| I
e 2
L ! I » X > x
o /% xa
|
/ gl>1
Figure 3.6. llustrations of convergent and nONCconvergent seqUences x,.; = g(x,)
o =X, Mo — x,-1) (3.49)
Solving for and putting it in a computationally convenhient form, we have
2 , .
R -l-—x(xn = Xp-1) (3.50)

We need an estimate of A. It cannot be calculated from its definition, since that
requires knowing the solution .. The same is true of the ratios in (3.48). To estimate A,

104

Example 3.4.5

Chapter 3 ROOTFINDING

Table 3.5. The Iteration x,4; = 1 +x, — $x2

n

n Xn o - Xp 'n

0 2.5 —2.64E — 1

1 2.25 —1.39E -2 0.0528
2 2.2375 —1.43E -3 0.1028
3 2.23621875 —-1.51E—-4 0.1053
4 2.23608389 ~1.59E -5 0.1055
5 2.23606966 —1.68E — 6 0.1056
6 2.23606815 —-1.77E -7 0.1056
7 2.23606800 ~1.87E — 8 0.1056

we use the ratios

ay =TIl >0 (3.51)
Xp—1 — Xn-—2

To see that this should be an increasingly good estimate of A as n — 0, write it as

Ay = 8(xn—1) — §(Xn-2) — g(c)
Xp—1 — Xn-2

with some ¢, satisfying min{x,—1, X,—2} < ¢ < max{x,_1, X,—2}. The last equality
follows from the mean value theorem. Since x, —> « as n — C0, wWe also have that
¢, — a; and by the continuity of g'(x), g'(cu) — &'(e) = A. Thus, A, — Aasn — o0.
Combining (3.50) and (3.51), we obtain

A
o= X, + . (X — Xn-1) (3.52)
1—A,

This is called Aitken’s extrapolation formula. Writing it in the equivalent form

) (3.53)

n

o= Xy =

gives Aitken’s error estimate.This formula can be used to estimate the error in the original
iterates {x,}, or formula (3.52) can be used to create a more rapidly convergent sequence.

We repeat the example on the iteration I3. Table 3.6 contains the differences x, — Xn-1,
the ratios A, and the estimated error from (3.53), given in the column labeled Estimate.
Compare the column Estimate with the error column in Table 3.5. =

General Remarks There are a number of reasons to perform theoretical error anal-
yses of a numerical method. We want to better understand the method, when it will

3.4 FIXED POINT ITERATION 105

Table 3.6. The Iteration x,,.; = 1 + x, — +x? and Aitken Error Estimation R

5%y
n Xn Xp = Xp—1 An Estimate
0 2.5
1 2.25 —2.50E - 1
2 2.2375 —1.25E -2 0.0500 —6.58E — 4
3 2.23621875 —1.28E -3 0.1025 —1.46E — 4
4 2.23608389 —135E -4 0.1053 -1.59E -5
5 2.23606966 —142E -5 0.1055 —1.68E -6
6 2.23606815 -1.50E ~ 6 0.1056 -1.77E-17
7 2.23606800 -1.59E -7 0.1056 —1.87E—~ 8

perform well, when it will perform poorly, and perhaps, when it may not work at all.
With a mathematical proof, we convince ourselves of the correctness of a numerical
method under precisely stated hypotheses on the problem being solved. Finally, we
often can improve on the performance of a numerical method. The use of Theorem 3.4.2
to obtain the Aitken extrapolation formula of (3.52) is an illustration of the following:

GENERAL OBSERVATION:

By understanding the behavior of the error in a numerical
method, it is often possible to improve on that method and
to obtain another more rapidly convergent method.

(3.54)

We will illustrate this at other points in the text.

3.4.2 Higher-Order Iteration Formulas
The convergence formula (3.41) gives less information in the case g’(«) = 0, although
the convergence is clearly quite good. To improve on the results in Theorem 3.4.2,

consider the Taylor expansion of g(x,) about ¢, assuming that g (x) is twice continuously
differentiable:

1
80m) = g(@) + (¥ — @)g'(@) + 5 (6 —)" (cx) (3.55)
with ¢, between x,, and .. Using x,1; = g(x,), @ = g(a), and g’(a) = 0, we have
.1 :
Xpyp1 =0 + E(xn —a)?g"(cn)

' 1 1
& — Xpgp = _5(05 - xn)zg (cn) (3.56)

. O = Xpy1 1,
—_ o 3.
A g = 38 @ (3.57)

106

PROBLEMS

Chapter 3 ROOTFINDING

If g"(a) # O, then this formula shows that the iteration x,,..; = g(x,) is of order 2 or is
quadratically convergent.

If also g”(a) = 0, and perhaps also some higher-order derivatives are zero at o,
then expand the Taylor series through higher-order terms in (3.55), until the final error
term contains a derivative of g that is nonzero at . This leads to methods with an order
of convergence greater than 2.

As an example, consider Newton’s method as a fixed-point iteration:

Xn+1 = 8(Xa), glx) =x — J{,(é)) (3.58)
Then,
roon _ F@)f"(x)
EO =T or
and if f'(a) # 0, then
@) =0

Similarly, it can be shown that g”(q) # 0 if moreover, f”(a) # 0. If we use (3.57),
these results show that Newton’s method is of order 2, provided that f’(x) # 0 and

f(@) #0.

1. (a) Calculate the first six iterates in the iteration
Xn+1 = 1 4+ 0.3 sin(x,)

with xp = 1. Choose other initial guesses xy and repeat this calculation.
(b) Find an interval [a, b] satisfying the hypotheses of Theorem 3.4.2.
Hint: For g(x) =1+ 0.3sin(x), let

a= min g(x), b= max g(x)
—00 <X <00 —00<X <00

(¢c) Prepare a table in the same manner as Table 3.5 in the preceding discussion.
The true solution is & = 1.28809131321184.

2. Repeat Problem 1 for the iteration x,4; = 0.5/(1 +xf). The true solution is
« = 0.423853799069783.

3. How many solutions are there to the equation x = ¢™*? Will the iteration x,; =
e~ converge for suitable choices of x¢? Calculate the first six iterates when
Xg = 0.

4. Repeat Problem 3 with x,+; = 1 + tan~!(x,).

3.4

10.

FIXED POINT ITERATION 107

Show that for any constants ¢ and d, |d | < 1, the equation x = ¢ 4.4 cos(x) =
&(x) has a unique solution . In addition, show that the iteration Xpt1 = C +
d cos(x,) will converge to &. Bound the rate of convergence.

Convert the equation x2 — 5 = 0 to the fixed-point problem
x=x+c(x?=5)=g)

with ¢ a nonzero constant. Determine the possible values of ¢ to ensure conver-
gence of

Xnt1 = Xp + C(X3 -35)

tooe::«/g.

What are the solutions «, if any, of the equation x = /T + x? Does the itera-

tion x,41 = /1 + x, converge to any of these solutions (assuming x is chosen
sufficiently close to «)?

Which of the following iterations will converge to the indicated a, provided xg
is chosen sufficiently close to «? If it does converge, determine the convergence
order.

15x2 — 24x, + 13

(a) Xpt+1 = , oa=1.

4x,
b) x4 = %xn + l/xg’, o =42

Consider the rootfinding problem f(x) = 0 with root «, with f'(x) # 0. Convert
it to the fixed-point problem

x=x+cf(x)=gx)

with ¢ a nonzero constant. How should ¢ be chosen to ensure rapid convergence
of

Xnt1 = X+ cf (x,)

to o (provided that xo is chosen sufficiently close to «)? Apply your way of
choosing c to the rootfinding problem x> — 5 = 0.

Prove Corollary 3.4.3. To do this, note first that combining Ig’(oz)l <1 and the
continuity of g’(x) shows that for some r > 0, *

lo = x| < r implies ['() — ¢'(x)| < 1_:]_;,(0,_);

Examine the interval [a, b] = [« — r, & +] and the size of g’(x) on this interval.

108

Chapter 3 ROOTFINDING

11.

12.

13.

14.

15.

The iteration x, 41 =2 — (1 +¢)xn + cx,3l will converge to o = 1 for some values
of ¢ (provided that xo is chosen sufficiently close to). Find the values of ¢ for
which convergence occurs. For what values of c, if any, will the convergence be
quadratic?

Consider the equation x = g.(x) = cx(1 — x), with ¢ a nonzero constant. This
equation has two solutions, and we let a, denote the nonzero solution. What is
. For what values of ¢ will the iteration x,.1 = gc(x,) converge to o, (provided
that x is chosen sufficiently close to o)?

Note: This equation x = g.(x) is called the logistic equation, and it and the as-
sociated iteration x,1 = g.(x,) have recently been of great interest as an example
in the mathematical theory of chaos. To observe some of the behavior that has
been of interest, slowly increase the value of ¢ past the interval found earlier in the
problem, keeping ¢ < 4. Observe the behavior of the iterates over large number
values of n. For a more extensive discussion, see Ian Stewart, Does God Play
Dice?, Blackwell Ltd. Publishers, Oxford, 1989, p. 155.

Use Aitken’s error estimation formula (3.53) to estimate the error o — x; in the
following iterations:

@ xppr=e ", xp = 0.57
, 0.5
b)) xp = 1—_}_—-}—2‘, xg = 0.48

(€ xp41=1+05 sin(x,), x =15

For slowly convergent sequences, the Aitken extrapolation formula (3.52) can
greatly accelerate the convergence. Use the following algorithm:

x1 = g(xo)
X2 = g(x1)
x3 = Aitken extrapolate of xo, x1, and x2
x4 = g(x3)
x5 = g(xa)

x¢ = Aitken extrapolate of x3, x4, and xs.

Continue this process in the same manner. Apply it to the following iterations:

@ Xy =27, xo = 0.8
0.9
d) xpp1 = T+t x0 = 0.75

(© xpp1 = 628 +sin(x,), xo=26

Show that (3.52) can be rewritten as

(xn - -xn—-l)2

(X = Xp—1) — (Xp_1— Xn—2)

o R, —

3.5 ILL-BEHAVING ROOTFINDING PROBLEMS 109

16. Compute (3.57) for Newton’s method (3.58). Compare your result with (3.19) in
Section 3.2.

17. Derive the generalization of (3.57) when « = g(a), g'(a) = g"(ar) =0, and
g9 (@) #0.

18. What is the order of convergence of the iteration

Xn (x,f + 3a)
3x2+a

Xnt+1 =

as it converges to the fixed point o = /a?

3.5. ILL-BEHAVING ROOTFINDING PROBLEMS

Example 3.5.1

We will examine two classes of problems for which the methods of Sections 3.1 to 3.4
do not perform well. Often there is little that a numerical analyst can do to improve
these problems, but one should be aware of their existence and of the reason for their
ill-behavior.

‘We begin with functions that have a multiple root. The root a of f(x) is said to be
of multiplicity m if

F(x) =& —a)"h(x) (3.59)

for some continuous function %(x) with A(a) % 0, m a positive integer. If we assume
that f(x) is sufficiently differentiable, an equivalent definition is that

f@=fl@=-=f"Ya)=0, f™@#0 (3.60)

A root of multiplicity m = 1 is called a simple root [recall (3.18) in Section 3.2].

-

(@ f(x) = (x — 1)*(x +2) has two roots. The root « = 1 has multiplicity 2, and
o = —2 is a simple root.

() f(x) =x3—3x2+3x — 1 hasa = 1 as aroot of multiplicity 3. To see this, note
that

fF)=f(=f"1)=0, =6
~ The result follows from (3.60).

() f(x)=1—-cos(x)has @ = 0 as aroot of multil;licity m = 2. To see this, write

2sin%(x/2)
x2

fx) =x [:I = x’h(x)

with £(0) = 1. The function A(x) is continuous for all x.

110

Example 3.5.2

Chapter 3 ROOTFINDING

y!
7
/
W\

— o —

Double root

Simple root

Figure 3.7. The interval of uncertainty in evaluation of a root

When the Newton and secant methods are applied to the calculation of a multiple
root «, the convergence of & — x, to zero is much slower than it would be for a simple
root. In addition, there is a large interval of uncertainty as to where the root actually
lies, because of the noise in evaluating f (x).

The large interval of uncertainty for a multiple root is the most serious problem
associated with numerically finding such a root. In Figure 2.2 of Chapter 2, we illustrate
the noise in evaluating f(x) = (x — 1)?, which has a = 1 as a root of multiplicity 3.
That graph also illustrates the large interval of uncertainty in finding . To further
illustrate the difference in the intervals of uncertainty between simple roots and multiple
roots, see Figure 3.7. The dashed lines drawn about each side of the graph of y = f(x)
are meant to give the outer limits on the noise in evaluating f (x), and in both graphs we
use the same outer limits on the noise (this is the vertical distance for any x, and they
are the same). The intersection of the band of noise with the x-axis shows the interval
in which the root & may be located, and it is much larger with the multiple root.

To illustrate the effect of a multiple root on a rootfinding method, we use Newton’s
method to calculate the root = 1.1 of

fx) = (@x—1L1%x =21 3.61)
= 2.7951 + x(—8.954 + x(10.56 + x(—5.4 + x))))
The computer used is decimal with six digits in the significand, and it uses rounding. The
function f(x) is evaluated in the nested form of (3.61), and f’(x) is evaluated similarly.
The results are given in Table 3.7. The column “Ratio” gives the values of

¢ In (3.62)

o — Xp-1

3.5 ILL-BEHAVING ROOTFINDING PROBLEMS 111

Table 3.7. Newton’s Method for (3.61)

n Xn S (xa) o — xp Ratio
0 0.800000 0.03510 0.300000

1 0.892857 0.01073 0.207143 0.690
2 0.958176 0.00325 0.141824 0.685
3 1.00344 0.00099 0.09656 0.681
4 1.03486 0.00029 0.06514 0.675
5 1.05581 0.00009 0.04419 0.678
6 1.07028 0.00003 0.02972 0.673
7 1.08092 0.0 0.01908 0.642

and we can see that these values equal about % The iteration is linearly convergent with
arate of % @

It is possible to show that when we use Newton’s method to calculate a root of
multiplicity m, the ratios (3.62) will approach

A= — m=>1 (3.63)

(This is left to Problem 3.) Thus as x,, approaches o,
o — X, 2 AMa — x,-1) (3.64)

and the error decreases at about the constant rate. In our example, A = %, since the root
has multiplicity m = 3, which corresponds to the values in the last column of the table.
The error formula (3.64) implies a much slower rate of convergence than is usual for
Newton’s method. With any root of multiplicity m > 2, the number A > 1; thus, the
bisection method is always at least as fast as Newton’s method for multiple roots. Of
course, m must be an odd integer to have f(x) change sign at x = «, thus permitting
the bisection method to be applied.

A further observation from Table 3.7 is that the iterate x7 is an exact root of f(x)in
the computer, even though it is very far from & = 1.1. This is explained by the rounding
errors that occur in the evaluation of f(x). The resulting noise in evaluating f(x) leads
to a fairly large interval in which the root & might lie, just as illustrated earlier in Fig-
ure 3.7.

The only way to obtain accurate values for multiple roots is to analytically remove
the- multiplicity, obtaining a new function for which,x is a simple root. Otherwise,
there will be a large interval of uncertainty for the location of the root. To remove the
multiplicity, first use Newton’s method to determine the multiplicity m of «, using the
results (3.63) and (3.64), together with the approximation

Xpn — Xp—1

AR A, = T Tl (3.65)
Xn—1— Xn-2

112

Example 3.5.3

Example 3.5.4

Chapter 3 ROOTFINDING

(See Problem 3.) Once A is found, we can determine m from (3.63). Then analytically
we can calculate

F(x) = fD(x)

From (3.59), it can be shown that F(x) will have « as a simple root. Solve F(x) = 0 to
find o accurately.

Differentiate (3.61) twice to obtain the new rootfinding problem
f(x) =21.12-324x + 12x2 =0

This equation has o = 1.1 as a simple root, and Newton’s method will converge rapidly
to a very accurate value. Use the final computed value x; from Table 3.7 as an initial
guess for the desired root o of f"(x) =0. =

3.5.1 Stability of Roots

With most functions f(x), if a small error is made in calculating the function, then the
root will change by a correspondingly small amount. However, there are a number of
functions for which this is not true. With those functions, very small errors in evaluating
S (x) will lead to very large changes in the roots of the function. Finding the root of
such a function is called an ili-conditioned or unstable problem. We give a well-known
example of such a function, and then we return to an analysis of unstable rootfinding
problems.

Define

)= -DEx - =3)x -4 x =5 —6)(x -7 (3.66)
= x7 — 28x% 4 322x° — 1960x* + 6769x> — 13,132x% + 13,068x — 5040

Change the coefficient of x5 from —28 to —28.002, and call the new function F(x). The
change in the coefficient is relatively small

© 0.002
[Rel(28.002)| = TR =7.14 x 1073 (3.67)

The roots of f(x) are clearly {1,2,...,7}. The roots of F(x) are given in Table 3.8,
correctly rounded to eight significant digits. Some of these roots are far from the corre-
sponding roots of f(x), even though the change from f(x) to F(x) is relatively small.
A similar change in some of the other coefficients of f(x) will lead to the same kind of
behavior in the roots.

Example 3.5.5

3.5 ILL-BEHAVING ROOTFINDING PROBLEMS 113

Table 3.8. Roots of f(x) and F(x)

Root of Root of Error
fx) F(x)

1 1.0000028 -28E—6

2 1.9989382 1.1E-3

3 3.0331253 -33E-2

4 3.8195692 0.18

5 5.4586758 + 0.54012578i —0.46 — 0.54i
6 5.4586758 — 0.54012578i 0.54 + 0.54i
7 7.2330128 -0.23

To talk about the approximate evaluation of a function f (x), introduce the perturbed
function ’

Fe(x) = f(x) +eg(x) (3.68)

The function g(x) is assumed to be continuously differentiable, and € is to be a reasonably
small number. For small values of €, the functions F,(x) and f(x) will be nearly the
same.

For the preceding example (3.66), we would have

F.(x) = f(x) +egx), g(x) = x5, € = —0.002 (3.69)

The roots of F.(x) will depend on ¢, and we denote such a root by a(e). The
original root & of f(x) is just a(0). To simplify our discussion, we will assume that
(0) is a simple root of f(x) and, thus, f(c(0)) s 0. This discussion will be adequate
for understanding the example (3.66). .If we use these assumptions, it can be shown
by more advanced mathematical results that a Taylor polynomial approximation can be
used to estimate a(¢) if € is sufficiently small. We will use

a(e) = a(0) + ea’(0) (3.70)

Thus, we need to compute o/ (0).

Since a(¢) is a root of F.(x), we have
f(a(e)) + eglale)) =0 (3.71)

for all small values of €. Take the derivative of both sides of this equation, using € as
the variable for the differentiation. This yields ’

fla@)a'(€) + gla(e)) + eg'(a(e)a’(€) =0 (3.72)

114

Example 3.5.6

Chapter 3 ROOTEFINDING

Substitute € = 0 to get
f'(@(0)a'(0) + g(@(0)) =0

and solve for o’ (0)

/ g (0))
o' (0) = — 3.73
O ="Feoy @.73)
Using this in (3.70), we get
a(€) ~ a(0) — e 2¢O (3.74)

f(«@)

for all sufficiently small values of €. If the derivative o’(0) is very large in size, then the
small change ¢ will be magnified greatly in its effect on the root.

Consider the root «(0) = 4 for the polynomial f(x) of (3.66). Use the definition of
F(x) given in (3.69). Then

fA=4-1D4-2)4-3)4-54-6)(4—-T7)=-36

g(4) =45 = 4096

. 4096 (3.75)
a(e) = 4 + 114¢

This shows that the small change € will be magnified greatly in its effect on the root
«(0) = 4 for f(x). For the particular choice of (3.69),

afe) =44 114(-0.002) = 3.772

which is approximately the actual root 3.820 given in Table 3.8. For the results of Table
3.8 with a(0) = 5 or 6, the estimation formula (3.74) cannot be valid. Since (3.74)
predicts a real number as the perturbation, the complex perturbations in Table 3.8 could
not have been predicted from it. The value of € would have needed to have been smaller
in order for (3.74) to be valid. =

Finding the roots of a polynomial such as (3.66) is an unstable problem. There is not
much that can be done with such a problem except to go to higher precision arithmetic.
The main difficulty lies in the original formulation of the mathematical equation to be
solved, and often there is another way to approach the problem that will prevent the
unstable behavior.

3.5 ILL-BEHAVING ROOTFINDING PROBLEMS 115

PROBLEMS 1. Use Newton’s method to calculate the roots of
Fx) = x> +0.9x* — 1.62x> — 1.458x% + 0.6561x + 0.59049

Print out the iterates and the function values. Produce the ratios of (3.62) by using
the approximation (3.65)

o —X X — X
n ~ n+1 n

O — Xp—1 Xn — Xn—1

Repeat the problem for several choices of xo. Make observations that seem im-
portant relative to the rootfinding problem.

Note: The above will first approach A = (m — 1)/m, as in (3.63), but they will
then depart from it because of noise in the evaluation of f(x) as x, approaches
the root.

2. Repeat Problem 1 for

Fx) =x* —3.2x +0.96x% + 4.608x — 3.456

3. Use the fixed point iteration theory of Section 3.4 to derive the results (3.63) to
(3.65). To aid with this, first write

)
f1(xa)

Xn41 = g(xn) = Xn

and use (3.59) to write

) =x — (x —a)h(x)
B = T i+ -l)

Apply Corollary 3.4.3.
4. Do the calculation of a(¢) for the roots «(0) = 3 and 7, continuing Example 3.5.6.

5. Do the perturbation calculation for another change in (3.66). Change the coefficient
of x* from —1960 to —1960.14. What is the relative perturbation in the coefficient?
Calculate «(¢) for ¢(0) = 3 and «(0) = 5.

6. Consider the problem of solving x/(1 4+ x) —0.99 = 0, calling its root . Then
let a(¢) be the solution of x /(1 4+ x) —0.99 +¢ = 0.
(a) Using (3.74), estimate a(€) — .

(b) Calculate a(e) directly, compute e (€) — o, and compare with (a). Comment
on your results.

116 Chapter 3 ROOTFINDING

7. Consider the polynomial f(x) = x° —300x% — 126x - 5005, which has a root
a = 5. Also consider the perturbed function

F.(x) = f(x) +ex® = (1 + €)x® — 300x* — 126x + 5005

with € being a small number. Letting a(€) denote the perturbed root of Fe(x) =0
corresponding to &(0) = 5, estimate cz(€) — 5. Is finding o = 5 for f(x) =0an
unstable rootfinding problem?

8. Newton’s method is used to find a root of f(x) = 0. The first few iterates are
shown in the following table, giving a very slow speed of convergence. What can
be said about the root o to explain this convergence? Knowing f(x), how would
you find an accurate value for o?

n X Xy — Xp—1
0 0.75

1 0.752710 0.00271
2 0.754795 0.00208
3 0.756368 0.00157
4 0.757552 0.00118
5 0.758441 0.000889

INTERPOLATION AND
APPROXIMATION

0000000000800 0000006000080000000008000006000300030600000000000O0CCB0CI00D0O0C0C00C000CEDECCRCOIEESEDT

Most functions encountered in mathematics courses cannot be evaluated exactly, even
though we usually handle them as if they were completely known quantities. The simplest
and most important of these are ./x, ¢*, log(x), and the trigonometric functions; and
there are many other functions that occur commonly in physics, engineering, and other
disciplines.

In evaluating functions, by hand or using a computer, we are essentially limited to
the elementary arithmetic operations +, —, %, and <. Combining these operations means
that we can evaluate polynomials and rational functions, which are polynomials divided
by polynomials. All other functions must be evaluated by using approximations based
on polynomials or rational functions, including piecewise variants of them (e.g., spline
functions). In this chapter we discuss polynomial approximations of functions. Rational
functions generally give slightly more efficient approximations; but polynomials are
adequate for most problems, their theory is much easier to work with, and therefore we
limit our discussion to polynomials.

Interpolation is the process of finding and evaluating a function whose graph goes
through a set of given points. The points may arise as measurements in a physical

117

118 Chapter 4 INTERPOLATION AND APPROXIMATION

problem, or they may be obtained from a known function. The interpolating function
is usually chosen from a restricted class of functions, and polynomials are the most
commonly used class. In Section 4.1 we define the polynomial interpolation problem
and give two formulas for constructing an interpolating polynomial. In Section 4.2 we
analyze the error involved in polynomial interpolation. In the past few decades, much
more use has been made of piecewise polynomial functions, and chief among these isthe
class of functions called spline functions. In Section 4.3 we introduce spline functions
in the context of interpolation.

' In Chapter 1, we studied the Taylor polynomial as a means to evaluate a given
function f(x). This is a relatively easy way to approximate most commonly used
functions to any desired level of accuracy; and often the Taylor polynomial is the only
direct method of approximating such functions. Nonetheless, a Taylor polynomial for
£ (x) is usually a very inefficient approximation; if the approximation is to be used many
times, then it should be replaced by a formula requiring less evaluation time. If a Taylor
polynomial of some degree is being used, then there is usually another polynomial of
much lower degree that will be of equal accuracy; and its lower degree will decrease
both the evaluation time and the number of rounding errors in the evaluation process.

In the last four sections of the chapter, we consider the general problem of approx-
imating a function f(x) by a polynomial. This extends the ideas of Chapter 1 where
Taylor polynomial approximations were discussed. In Section 4.4 we discuss the general
problem of approximating a function using polynomials, and in Section 4.6 we use in-
terpolation to construct an improvement on Taylor approximations. Section 4.5 contains
an introduction to an important class of polynomials called the Chebyshev polynomials,
and these are needed in the construction given in Section 4.6. The chapter concludes
with Section 4.7, in which the idea of approximation in the sense of least squares is
introduced.

4.1. POLYNOMIAL INTERPOLATION

Interpolation is used in a wide variety of ways. Originally, it was used widely to do
interpolation in tables defining common mathematical functions; but that is a far less
important use in the present day, due to the availability of computers and calculators.
Interpolation is still used in the related problem of extending functions that are known
only at a discrete set of points, and such problems occur frequently when numerically
solving differential and integral equations. Next, interpolation is used to solve problems
from the more general area of approximation theory. Interpolation is an important tool
in producing computable approximations to commonly used functions. Moreover, to
numerically integrate or differentiate a function, we often replace the function with a
simpler approximating expression, and it is then integrated or differentiated. These
simpler expressions are almost always obtained by interpolation. Also, some of the

Example 4.1.1

4.1 POLYNOMIAL INTERPOLATION 119

most widely used numerical methods for solving differential equations are obtained
from interpolating approximations. Finally, interpolation is widely used in computer
graphics, to produce smooth curves and surfaces when the geometric object of interest
is given at only a discrete set of data points.

4.1.1 Linear Interpolation

We begin by considering the construction of a polynomial whose graph will pass through

two given data points. This form of interpolation is called linear interpolation, and it is
used here as an introduction to more general polynomial interpolation.

Given two points (xo, yo) and (x1, y;) with xo # x;, draw a straight line through
them, as in Figure 4.1. The straight line is the graph of the linear polynomial

Pi(x) = (x1 — x)yo + (x — x0)y1 @1

X1 — Xo

The reader should check that the graph of this function is the straight line determined by
(%0, yo0) and (x1, y1). We say that this function interpolates the value y; at the point x;,
i=0,1;0r '

Pix)=y, . i=0,1

Let the data points be (1, 1) and (4, 2). The polynomial P;(x) is given by

4- e
Pl(x)=(x)(l)-;-(x)(2) 42)

The graph of y = P, (x) is shown in Figure 4.2, along with that of y = ,/x from which
the data points were taken. = .

(xg0 ¥o)

Figure 4.1. Linear interpolation

120

Example 4.1.2

Chapter 4 INTERPOLATION AND APPROXIMATION

4.2

|
|
|
I
|
|
|
|
1
4

Figure 4.2. 'y = ./x and its linear interpolating polynomial {4.2)

0.826

Obtain an estimate of ¢ using the function values

%82 = 2270500, "8 = 2293319

Denote xo = 0.82 and x; = 0.83. The polynomial P, (x) interpolating e* at xq and x, is
given by
(0.83 — x)(2.270500) + (x — 0.82)(2.293319)

Pi(x) = 001 4.3)

In particular,
P1(0.826) = 2.2841914 4.4)
For comparison, the true value is
"826 = 2.2841638 (4.5)

to eight significant digits. =

4.1.2 Quadratic Interpolation

Most data arise from graphs that are curved rather than straight. To better approximate
such behavior, we look at polynomials of a degree greater than 1. Assume that three data
points (xo, yo), (x1, 1), and (x2, y2) are given, with xg, x1, x, being distinct numbers.
We construct the quadratic polynomial that passes through these points as follows:

Py(x) = yoLo(x) + y1L1(x) + y2L5(x) 4.6)

Example 4.1.3

4.1 POLYNOMIAL INTERPOLATION 121

with
(x —x1)(x — x2)
Lo(x) =
"0 = o T — %)
Li(x) = (x — x0)(x — x2) @

(1 — xp)(x1 — x3)
(x = x0)(x — x1)

L =
2(x) (2 — x0) (%2 — x1)

Formula (4.6) is called Lagrange’s formula for the quadratic interpolating polynomial;
and the polynomials Lo, L1, and L, are called the Lagrange interpolation basis functions.
Each polynomial L;(x) has degree 2 and, thus, Py(x) has degree < 2. In addition,

Li(x;) =0, J#i
Li(x;) =1

for 0 < i, j < 2. These two statements are combined into the statement
L;i(x;) = 8y, 0<i,j=<2 B CES

where §;; is called the Kronecker delta function

P 1, i=j
ST, i #
With the use of these properties, we can easily show that P,(x) interpolates the data

Py(x;) =y, i=0,1,2

Construct P»(x) for the data points (0,.—1), (1, —1), and (2, 7). Then

— D —2 - -
Py = EEDEZD () T gy oDy

Its graph is shown in Figure 4.3.

With linear interpolation, it was obvious that there was only one straight line passing
through two given data points. But with three data points, it is less obvious that there
is only one quadratic interpolating polynomial whose*graph passes through the points.
To see that there is only one such polynomial, we assume that there is a second one and
then show that it must equal P;(x). Let Q,(x) denote another polynomial of degree < 2
whose graph passes through (x;, y;),i = 0, 1, 2. Define

R(x) = Py(x) — Qa(x) (4.10)

; 122 Chapter 4 INTERPOLATION AND APPROXIMATION

y
3

14}

@7

! L 1] P X

T O D~——0.-» 2 3

Figure 4.3. 'The quadratic interpolating polynomial (4.9)

Since P, and Q5 both have degree < 2, we also have deg(R) < 2. In addition, using the
interpolating property of both P, and Q,, we get

R(x)) = Pa(x;) — Q2(x:)
=y —¥=0

fori = 0, 1, 2. Thus, R(x) has three distinct roots xg, x1, and x, but its degree is < 2.
By the fundamental theorem of algebra [see B.1(e) of Appendix B], this is not possible
" unless R(x) = 0, the zero polynomial. But from (4.10), that says P,(x) = 0, (x); and
thus there is only one polynomial of degree < 2 that satisfies

Py(x;) = Vi, =0,1,2 (4.11)

Example 4.1.4 Calculate a quadratic interpolate to ¢%*% from the function values

282 = 2.270500, 083 = 2293319, 0% = 2316367

We choose xo = 0.82, x; = 0.83, x2 = 0.84. Then it is straightforward (although te-
dious) to calculate

P5(0.826) = 2.2841639 (4.12)

to eight digits. Comparison to the true answer ¢%826 = 2.2841638 shows that P2(0.826)
is a significant improvement over P;(0.826) = 2.2841914. =

Theorem 4.1.5

4.1 POLYNOMIAL INTERPOLATION 123

4.1.3 Higher-Degree Interpolation .

We now consider the general case. Assume that we are given n -1 data points
(%0, Y0)s - - - » (Xn, Yn), with all of the x;’s distinct. The interpolating polynomial of
degree < n is given by

Po(x) = yoLo(x) + y1L1(x) + -+ + yaLn(x) (4.13)
with each L;(x) a polynomial of degree n given by

(x —x0) -+ (x = X)X — X)) - - (X — %)
L; = .
) (ki —x0) -+ O — X)X — Xigy) -+ (X — Xn) “.14)

fori =0,1,...,n. The denominator equals the value of the numerator at x = x;. For
the case i = 0, this formula becomes

(x"xl)"'(x“'xn)

L =
) = e T o=)

and L, (x) is defined analogously. Note that the function L; (x) defined in (4.14) depends
on n. Since the value of » is usually clear from the context, we do not explicitly express
the dependence of L;(x) on n.

From (4.14), it is easy to show that L;(x) satisfies

Ll-(x,-)=8,-,-, 0<j=<mn 4.15)
fori =0,1,...,n If we use (4.15), it follows by direct substitution of x = x; into
(4.13) that

Py(xj) =y;, j=0,1,...,n (4.16)

Formula (4.13) is called Lagrange’s for;nula for the degree n interpolating polynomial.

The fact that there is only one polynomial satisfying (4.16) among all polynomials
of degree < n is proved in a manner analogous to that used with quadratic interpolation,
following (4.10). This is left as Problem 11. Because of its importance, we state the
results of this subsection as a formal mathematical theorem.

Letn > 0, assume xg, X1, ..., X, are n -+ 1 distinct numbers, and let yg, ..., y, ben + 1
given numbers, not necessarily distinct. Then, among all polynomials of degree < n,

‘there is exactly one polynomial P, (x) that satisfies -

Py (x;) = yi, i=0,1,...,n

Our primary use in this text for polynomial interpolation is to produce approxi-
mations to a given function f(x). Polynomials can be easily evaluated, and it is also

124

Chapter 4 INTERPOLATION AND APPROXIMATION

straightforward to integrate or differentiate them. Interpolation polynomials will be
used in Section 4.6 and in Chapter 5 to produce approximate methods for evaluating,
integrating, and differentiating arbitrary functions f(x).

Another important use for interpolation is to find a smooth curve passing through
a set of data points {(x;, yi) | i = 1,..., N}; and generally, we want a curve that does
not have any oscillations or ripples in it. The solution to this problem leads us to spline
functions, taken up in Section 4.3; but the material on polynomial interpolation will still
be useful in developing this new type of interpolation function.

We caution the reader that the degree of the interpolation polynomial P, (x) may be
less than n. For purposes of illustration, suppose the three data points (x;, yi),i =0, 1,2,
lie on a straight line. Then P, (x) = Pi(x), where P, (x) is the linear interpolating
polynomial determined by the points (xo, yo) and (x1, y1). The reason for this lies in the
uniqueness result proven following (4.10). The polynomial Py (x) interpolates to all three
data points, by our assumption on them and, thus, it must equal P;(x), by the uniqueness
of Py(x). A similar argument holds true for higher-order polynomial interpolation.

4.1.4 Divided Differences

The Lagrange formula (4.13) is well-suited for many theoretical uses of interpolation,
but it is less desirable when actually computing the value of an interpolating polynomial.
As an example, knowing P,(x) doesnotleadtoa less expensive way to evaluate P3(x), at
least not in a simple manner. For this reason, we introduce an alternative and more easily
calculable formulation for the interpolation polynomials P (x), Py(x), .. Pu(x).

As a needed preliminary to this new formula for interpolation, we introduce a
discrete version of the derivative of a function f(x). Let xo and x; be distinct numbers,
and define

flxo, x11 = fe) = Fo) @.17)
X1 — X0

This is called the first-order divided difference of f(x). If f(x) is differentiable on an
interval containing xp and x1, then the mean value theorem implies

flxo, 111 = f1(©) (4.18)

for some ¢ between xg and X;. This is one justification for thinking of f[xo, x1] as being
an analog of the derivative of f(x). Also, if xo and x; are close together, then

Flxo, x11% f' ("-%ﬁ) 4.19,

which is usually a very accurate approximation. The analysis of this approximation it
taken up in Problem 20.

Example 4.1.6

Theorem 4.1.7

Example 4.1.8

4.1 POLYNOMIAL INTERPOLATION 125

Let f(x) = cos(x), xo = 0.2, x; = 0.3. Then

c0s(0.3) — cos(0.2) .

flxo, x1]1 = 0302 = —0.2473009 (4.20)

- For (4.19)

7 (xo ;xl) = —5in(0.25) = —0.2474040

and f[xo, x1] is a very good approximation of this derivative. =

We define higher-order divided differences recursively using lower-order ones. Let
Xg, X1, and x, be distinct real numbers, and define

Sflx1, %21 — flxo, x1]

X2 — Xp

Slxo, x1, x2] = (4.21)

This is called the second-order divided difference. For xg, x1, x2, and x3 distinct, define

Slx1, x2, x3] — flxo, x1, x2]

f[X(), X1, X2, x3] = (422)
X3 — X0
the third-order divided difference. In general, let xg, x1, ..., x, be n + 1 distinct num-
bers, and define
f[JCo, s, x"] — f[xls LR :xn] - f['xOs ceey xn—l] (423)

Xn — X0

This is the divided difference of order n, sometimes also called the Newton divided
difference.

The relationship of the higher-order divided differences to the derivatives of corre-
sponding order is given by the followiﬁg theorem. Its proof is given in the next section.

Let n > 1, and assume f(x) is n times continuously differentiable on some interval
o <x < pB.Letxg, xy,...,x, ben+ 1 distinct numbers in [c, 8]. Then

1
flxo, %1, oy X2l = ;,f‘"’(c) (4.24)

for some unknown point ¢ lying between the minimum and maximum of the numbers
P) PRRR

Let f(x) == cos(x), xp = 0.2, x; = 0.3, x5 = 0.4. Then f[x, x;] is given in (4.20), and

__c08(0.4) — cos(0.3) .
flx, 0] = 0A—03 = —0.3427550

126

Chapter 4 INTERPOLATION AND APPROXIMATION

From (4.21),
. —0.3427550 — (—0.2473009)
flxo, x1, %21 = 04 =02 = —0.4772705 (4.25)
For the case n = 2, (4.24) becomes
Flxo, x1, %21 = §£7(0) (4.26)

for some ¢ between the minimum and maximum of xg, x1, and Xa. Taking f"(x) =
— cos(x) with x = x;, we have

1£"(0.3) = —4 cos(0.3) = —0.4776682

which is nearly equal to the result in (4.25). =

4.1.5 Properties of Divided Differences

The divided differences (4.23) have a number of special properties that can simplify
work with them. First, let (ig, i1, - - - , in) denote a permutation (or rearrangement) of the
integers (0, 1, ..., n). Then it can be shown that

Tl Xips o oos X3, 1 = flxo, X1y ooy Xal 4.27)

The original definition (4.23) seems to imply that the order of xo, x1, .- ., Xn will make
a difference in the calculation of f[xo, ..., x,]; but (4.27) asserts that this is not true.
The proof of (4.27) is nontrivial, and we will consider only the cases n = 1 and n = 2.
Forn =1,

flw) =) _ flr) — fxo)

X0 — X1 X1 — Xo

Sflxi, x0l = = flxo, x1]

For n = 2, we can expand (4.21) to obtain

S (x0)
(30 — x1) (X0 — *2)
f(x1) + f(x2)

(61 — x0)(x1 —x2) (%2 — x0) (%2 — X1)

flxo, x1, x2] =
(4.28)

If we interchange values of xg, x1, and x,, then the fractions on the right side will
interchange their order, but the sum will remain the same. Try this with an interchange
of xo and x; on the right-hand side of (4.27). We leave the derivation of (4.28) as Prob-
lem 22.

A second useful property is that the definitions (4.17), (4.21) to (4.23) can be
extended to the case where some or all of the node points x; are coincident, provided

4.1 POLYNOMIAL INTERPOLATION 127
that f(x) is sufficiently differentiable. For example, define

flxo, xo] = lim flxo, x;] = lim F&) = fGxo)
X|—>Xo X1—>Xo X1 — Xg
flxo, x0] = f'(x0)

For an arbitrary n > 1, let all of the nodes in (4.24) approach xo. This leads to the
definition

1
f[x()a Xg, - - -, X0] = Ef(n) (o) (4.29)

where the left-hand side denotes an order n divided difference, all of whose nodes
are xg. ' . :

For cases where only some of the nodes are coincident, we can use (4.27), (4.29),
and (4.23) to extend the definition of divided difference. For example, .

Slxo, x1, x0] = flxo, X0, x1]
_ Sxo, x1] ~ flxo, %0l _ flxo, x1]1 — f'(x0) (4.30)

X1 — Xo X1 — X0

Further properties of divided differences are explored in the problems at the end of the
section.

MATLAB PROGRAM: Evaluating divided differences. Given a set of values
fxo), ..., f(x,), we will often need to calculate the set of divided differences

f[x07xl]! f[x01x15x2]7 ey f[x01x17 .. '1xn]

The MATLAB function given below can be used to this end, using the function call

“

divdif_y=divdif (x_nodes,y_values)

Note however that MATLAB does not allow zero subscripts, and therefore the vector
input variables x_nodes and y_values will need to be defined as vectors containing n + 1
components. More precisely, when given the nodes {xg, x1, ..., x,} and the associated
function values, we define the input vectors x_nodes and y_values as follows:

x_nodes = [xg, X1, ..., X,]
x_nodes(i) =x;_;, i=1,...,n+1
y—values = [f (-XO) ’ f (xl) L] f (xn)]
y_values(i) = f (x;i—1), i=1,...,n+1

431)

function divdif_f = divdif(t_nodes,f_values)
%

% This is a functionm,

128 Chapter 4 INTERPOLATION AND APPROXIMATION

% divdif_f = divdif(t_nodes,f_values)

9 It calculates the divided differences of the function

Y% values given in the vector f_values, which are the values of
Y some function f(t) at the nodes given in t_nodes. On exit,

h divdif_f(i) = £[t_1,...,t.i], i=1,...,m

% with m the length of t_nodes. The input values t_nodes and

% f_values are not changed by this program.

divdif_f = f_values;
m = length(t_nodes);
for i=2:m
for j=m:-1:i
divdif_£(j) = (divdif_f(j)-divdif_ £(j-1))
/(t_nodes(j)~t_nodes(j-i+1));
end
end

This program is illustrated in Table 4.1.

Table 4.1. Values and Divided Differences of cos(x)

i X; cos(x;) D;

0 0.0 1.000000 0.1000000E + 1
1 0.2 0.980067 -0.9966711E — 1
2 0.4 0.921061 —0.4884020E + 0
3 0.6 0.825336 0.4900763E — 1
4 0.8 0.696707 0.3812246E — 1
5 1.0 0.540302 —0.3962047E — 2
6 1.2 0.362358 —0.1134890E — 2

4.1.6 Newton’s Divided Difference Interpolation Formula

i From the discussion at the beginning of Subsection 4.1.4, it is clear that the Lagrange
0 formula (4.13) is very inconvenient for actual calculations for a sequence of interpolation
polynomials of increasing degree. Moreover, when computing with polynomials P, (x)
of varying n, the calculation of P, (x) for a particular » is of little use in calculating an
interpolation polynomial of higher degree. These problems are avoided by using another
formula for P, (x), one using the divided differences of the data being interpolated.

Let P,(x) denote the polynomial interpolating f(x;) at x;, for i =0,1,...,n.
Thus, deg(P,) < n and

Po(x;) = f(xi), i=01,...,n (4.32)

4.1 POLYNOMIAL INTERPOLATION 129

Then the interpolation polynomials can be written as follows:

Pi(x) = f(xo) + (x — x0) fx0, x1] (4.33)
Py (x) = f(xo) + (x — x0) f[x0, x1]

+ (v = x0) (x — x1) fxo, x1.%2] (4.34)
Pa(x) = f(x0) + (x — x0) flxo, 1] + - - w35

+ (x —x0)(x — x1) + - (X — Xx5—1) flx0, X1, .. ., Xn]

This is called Newton's divided difference formula for the interpolating polynomial. Note
that for k > 0,

Pri1(x) = P(x) + (x — x0) - - - (x — x) fx0, X1, « . ., X, Xe1] (4.36)

Thus, we can go from degree & to degree k + 1 with a minimum of calculation, once the
divided difference coefficients have been computed.

We will consider only the proof of (4.33) and (4.34). For the first case, consider
P (xp) and Pj(x;). Easily, P;(xo) = f(x0); and

Pi(x1) = fxo) + (xy — x0) [M:‘
X1 — X0

= flxo) +[f(x1) — f(xo)] = fx1)

Thus, deg(P;) < 1, and it satisfies the interpolation conditions. By the uniqueness of
polynomial interpolation (see Theorem 4.1.5), formula (4.33) is the linear interpolation
polynomial to f(x) at xg, x;.

For (4.34), note that

Py(x) = P1(x) + (x — x0) (x — x1) f [0, 11, 2] (4.37)
It satisfies deg(P») < 2; and for xg, x1,
Py(x;) = Pi(x;) +0 = f(x), i=0,1
Also,

Pa(x2) = f(x0) + (x2 — x0) fx0, x1]1 + (x2 —.x0) (x2 — x1) f[x0, X1, %3]
= f(x0) + (x2 — x0) f [x0, 1] + (x2 — x){f[x1, x2] — flxo, 211}
= f(xo0) + (x1 — x0) f[x0, x1] + (x2 — x1) fx1, x2]
= f(x0) +{f(x1) = f(x0)} + {f (x2) — f(x1)}
= f(x2)

130 Chapter 4 INTERPOLATION AND APPROXIMATION

By the uniqueness of polynomial interpolation, this is the quadratic interpolating poly-
nomial to f(x) at {xg, x1, x2}.

A general proof of the formula (4.35) is more complicated than we wish to consider
here. See Atkinson (1989, Chapter 3) for a detailed derivation of (4.35), along with
further properties of divided differences.

Example 4.1.9 Let f(x) = cos(x). Table 4.1 contains a set of nodes x;, the function values f(x;), and
the divided differences

Di=f[x07-'-1xi]1 iZO

These were computed using the MATLAB program divdif given above. Table 4.2
contains the values of P,(x) for x = 0.1, 0.3, 0.5 for various values of n. The true
values f(x) are given in the last row of the table. The calculations were done by using
(4.35) as implemented in the MATLAB program interp given below.

The preceding example used evenly spaced points x;. But, in general, the interpo-
lation node points need not be evenly spaced to use the divided difference interpolation
formula (4.35); nor need they be arranged in any particular order. In Section 4.6, we
will use (4.35) with node points that are not evenly spaced.

To evaluate (4.35) in an efficient manner, we can use a variation on the nested
multiplication algorithm of Section 1.3 in Chapter 1. First, write (4.35) as

P,(x) = Do + (x — %) Dy -+ (x — x0)(x — x1) D,

bt (X = X0) -+ (& — Xa—)Ds *43%)

with

s Do = f(x0), Di=flxo,....x] fori>1

Table 4.2. Interpolation to cos(x)

3 P,(0.1) P,(0.3) P,(0.5)
1 0.9900333 0.9700999 " 0.9501664
2 0.9949173 0.9554478 0.8769061
3 0.9950643 0.9553008 0.8776413
4 0.9950071 0.9553351 0.8775841
5 0.9950030 0.9553369 0.8775823
6 0.9950041 0.9553365 0.8775825

True 0.9950042 0.9553365 0.8775826

PROBLEMS

4.1 POLYNOMIAL INTERPOLATION 131

Next, rewrite (4.38) in the nested form

Pa(x) = Do+ (x — x0)[D1 + (x —x)[Dy + - - - 4.39)
+ (x — xn2)[Dpy + (x — Xn-1)Dy]- - -] '

For exauhple,
P3(x) = Do + (x — x0)[D1 + (x — x)[D; + (x — x2) D3]]

Using (4.39), we need only n multiplications to evaluate P, (x). The nested form (4.39)
is more convenient with a fixed degree n. To compute a sequence of interpolation
polynomials of increasing degree, it is more efficient to use the original form (4.35).

MATLAB PROGRAM: Evaluating the Newton divided difference form of the
interpolation polynomial. To aid in constructing examples like those in Tables 4.1
and 4.2, we include the following interpolation program. Also, the program uses the-
Newton divided difference form of the interpolating polynomial, with the nested form
given above. The program should be preceded by calling the function divdif that was
given earlier in this section. As earlier with divdif, note that MATLAB does not allow
a zero subscript; see (4.31).

function p_eval = interp(x_nodes,divdif_y,x_eval)

%

% This is a function

% p-eval = interp(x_nodes,divdif_y,x_eval)

% It calculates the Newton divided difference form of

% the interpolation polynomial of degree m-1, where the
% nodes are given in x_nodes, m is the length of x_nodes,
% and the divided differences are given in divdif_y. The
% points at which the interpolation is to be carried out
are given in x_eval; and on exit, p_eval contains the
corresponding values of the interpolation polynomial.

BN

n = length(x_nodes);
p_eval = divdif_y(m)*ones(size(x_eval));
for i=m-1:-1:1
p-eval = divdif_y(i) + (x_eval - x_nodes(i)).*p_eval;
end

1. Given the data points (0, 2), (1, 1), find the following:
(a) The straight line interpolating this data.

(b) The function f(x) = a + be* interpolating this data.
Hint: Find a and b so that £(0) =2, f(1) = 1.

132 Chapter 4 INTERPOLATION AND APPROXIMATION

(¢) The function f(x) = a/(b + x) interpolating this data.

In each case, graph the interpolating function.

2. (a) Find the function P(x) = a + bcos(mwx) + csin(wx), which interpolates
the data

x|0 05 1
yl2 5 4

(b) Find the quadratic polynomial interpolating this data.

In each instance, graph the interpolating function.

3. The following table was obtained in solving a differential equation. Using linear
interpolation between adjacent nodes x;, produce a continuous graph of this data
on the interval 0 < x < 6.

xi| 0.0 1.0 2.0 3.0 4.0 5.0 6.0
y,-lZ.OOOO 2.1592 3.1697 54332 9.1411 14.406 21.303

4, Given xg < x; and x, define

X — X0

X1 — X0

and let P;(x) interpolate the function f(x) at the points xp and x;. Show
Pi(x) = f(x0) + 1 [f(x1) — f(x0)]

) In the past, this formula was the most commonly used way of doing linear inter-
’ polation in tables of mathematical functions.

5. 'Write acomputer program to do linear interpolation and to check its accuracy. Input
xo and x; and then generate the data values using y = e* (or some other commonly
available function). For a variety of values of x, both inside and outside [xo, x1],
compute Pj(x), e*, and their difference E(x) = e* — Pi(x). Plot the values of
E (x), to see how the error varies with x.

6. Show that the formula (4.9) simplifies to

Py(x) = 4x® —4x — 1

7. Produce the quadratic polynomial interpolating the data {(—2, —15), (-1, —8),
(0, —3)}. Find the first zero of P,(x) to the right of x = 0. Does P,(x) have a
maximum? :

4.1

8.

10.

11.

12.

13.

POLYNOMIAL INTERPOLATION ; 133

Using (4.6), find the polynomial P,(x) that interpolates the following data. In
each case, simplify (4.6) as much as possible.

@@ {(0,1),(1,2),2,3)
M {0.1, (1,1, 2,1}

Comment on your results.

Let the nodes {xg, x1, x;} be evenly spaced withx; ~ xg = & = x, — X1. Recalling
the notation of Problem 4, define u = (x — x) /h. Let Py(x) be the polynomial
of degree < 2 that interpolates f(x) at the nodes xg, x1, x;. Show that

-1
Po(x) = f(xo) + n[f (x1) — f(x0)] + H—(MTJ {[fG2) = fle)]

= [fG1) = f o)1}
In the past, this formula was the most commonly used way of doing quadratic‘
interpolation in tables of mathematical functions. The quantities f(x;41) — f(x;)

are called forward differences of f(x), and their use is explored further in Prob-
lem 33.

Write out the complete formula (4.13) for P3(x), including all four of the polyno-
mials Lo(x), L1(x), Ly(x), L3(x) for this case.

(@) Prove that there is only one polynomial P; (x) among all polynomials of
degree < 3 that satisfy the interpolating conditions

Py(x;) =y, i=0,1,2,3

where the x;’s are distinct.

Hint: Generalize the proof given in and following (4.10) for the uniqueness
of P,(x).

(b) Give a proof of unjquenessh for P,(x) in Theorem 4.1.5.
(a) Forn = 3, explain why
Lo(x) + L1(x) + La(x) + La(x) = 1

for all x.

Hint: It is unnecessary to actually multiply out and combine the functions
L;(x) of (4.14). Use (4.13) with a suitable choice of {y0, ¥1, ¥2, y3}.

(b) Generalize part (a) to an arbitrary degree n > 0.

Continuing Problem 12 with degree of interpolation 7 = 3, explain why

R Lo() + X{Ly(x) + X Lo(x) + xiLax) =27, j <3

134

Chapter 4 INTERPOLATION AND APPROXIMATION

14.

15.

16.

17.

and

x] Lo(x) + x] L1 (x) + x§ La(x) +xiLs(x) # x, j>3

(a) Let PZ(O’Z) (x) denote the quadratic polynomial that interpolates the data
{(x0, ¥0), (x1, Y1), (x2, y2)}; let P2(1,3) (x) denote the quadratic polynomial
that interpolates the data {(x1, y1), (x2, ¥2), (x3, y3)}. Finally, let P3(x) de-
note the cubic polynomial interpolating the data {(xo, yo), (x1, y1), (x2, ¥2),
(x3, y3)}. Show that

(3 =)PP) + (x = 20) PP ()
X3 — Xo

Py(x) =

(b) How might this be generalized to constructing P, (x), interpolating {(xo. Yo),
.., (xp, yu)}, from interpolation polynomials of degree n — 1?

Find a polynomial P (x) of degree < 3 for which

P0) = y1, P(1) =y,
P'(0) = yy, P'(1) =,

with y1, Y2, ¥}, ¥} given constants. The resulting polynomial is called the cubic
Hermite interpolating polynomial.

Hint: Write
P(x) = y Hy(x) + y; Ha(x) + y2 H3(x) + yo Ha(x)

with H,, H,, Hs, H, cubic polynomials satisfying appropriate properties, in anal-
ogy with (4.15). For example, choose H;(x) to be a cubic polynomial that satisfies

H(0)=1, Hy(1)
H/(0).= 0, HI(1)

As a generalized interpolation problem, find the quadratic polynomial g(x) for
which

g0 =-1, gq)=-1, D=4

Find the solution to the interpolation problem of finding a polynomial g (x) with
deg(g) < 2 and such that

q(xo) = Yo, q(x1) = y1, q'(x1) =y

with xg # x;.

4.1

18.

19.

20.

21.

POLYNOMIAL INTERPOLATION 135

Hint: Write q(x) = yoMo(x) + y1Mi(x) + y{ My (x) where deg(M;) <2, i =
0,1,2 and each M;(x) satisfies suitable interpolating conditions at the points xg
and x;. For example, Mo (x) should satisfy

Mo(xo) =1, Mo(x1) = Mj(x1) =0

Let xo < X1 < x2, let {yo, y;, y2} be given. Find the polynomial q(x) with
deg(g) < 2 and such that

q(xo) = Yo, q'(x1) =y, q(x2) =y,

What condition, if any, is required in order to have g(x) be uniquely determined
from the given interpolation conditions? ,

Letxp = 0.85, x; = 0.87, x2 = 0.89. Using the values of ¢™, ¢*1, ¢* and fx)=
e*, calculate f[xp, x1], f[x1,x2], and f[xo, x1, x2]. Check the accuracy of the .
approximation (4.19).

Letz = (xo 4+ x1)/2, h = (x; — x0)/2. To analyze the approximation (4.19), con-
sider the error

f@

- —h
E=f[xo,x1]_f'(x°';x1>= f(z+h)2hf(z)

Expand f(z + k) and f(z — h) about z by using Taylor’s theorem from Section
1.2, and include terms of degree < 3 in the variable 4. Use these expansions to
show that

h2
E Y e "
z @)

for small values of . Thus, (4.19) is a good approximation when x; — xq is
relatively small.

(@) Let f(x) be a polynomial of degree m. For x # xg, define

f(x) = f(x0)

X — X0

g1(x) = flxo, x] =

Show g(x) is a polynomial of degree m — 1. This is another justification for
regarding the divided difference as an analog of the derivative.

Hint: The numerator f(x) — f(xo) is a polynomial of degree m with a
zero at x = xq. Use the fundamental theorem of algebra, noting that x; is a
root of f(x) — f(xo).
(b) For xo, x1, x distinct and for f (x) a polynomial of degree m, define
82(x) = flxo, x1, x]

Show g>(x) is a polynomial of degree m — 2.

136

Chapter 4 INTERPOLATION AND APPROXIMATION

22. Verify formula (4.28), thus showing the symmetry of f[xo, x1, x7] under permu-

23.

24.

25.

26.

27.
28.

29.

tations of the nodes.
Using (4.29) and the ideas used in obtaining (4.30), obtain a formula for calculating

(@ flxo, xo0, X1, x1] () flxo, xo0, X0, x1]

Given the data below, find f[xo, x1] and f[xo, x1, x2]. Then calculate P, (0.15)
and P,(0.15), the linear and quadratic interpolates evaluated at x = 0.15.

n Xn fxn)

0 0.1 0.2
1 0.2 0.24
2 0.3 0.30

Let f(x)=1/(1+x) and let xo =0, x; = 1, x, = 2. Calculate the divided
differences flxp, x1] and f[xo, X1, x2]. Using these divided differences, give
the quadratic polynomial P,(x) that interpolates f(x) at the given node points
{x0, %1, x2}. Graph the error f(x) — P2(x) on the interval [0, 2].

(a) By using function program divdif, calculate the divided differences Dy =

fxo), Dy = flxo, %1, ..., Ds = flxo, X1, X2, X3, X4, x5], for f(x) = €.
Use X0 = 0, Xy = 0.2, X2 = 0.4, ceey X5 = 1.0.

(b) Using the results of (a), calculate P;(x) for x = 0.1, 0.3, 0.5 and j =
1,...,5. Compare these results to the true values of e*.

Repeat Problem 26 with f (x) = tan™!(x).

The following data are taken from a polynomial p(x) of degree < 5. What is the
polynomial and what is its degree?

x |-2 -1 01 2 3
px) | -5 1 1 1 7 25

Produce a program to check the ‘accuracy of higher-order interpolation by using
Newton’s formula (4.35). For some f(x) and some node points xg, X1, . . - . X6,
use divdif to produce the divided differences

Di:f[xoa"'vxily i=0,1,...,6

Then evaluate Pg(x) for a variety of values of x, and compare them to the true
values of f(x). Check the program by reproducing some of the results in Tables

4.1

30.

31.

32.

33.

34.

POLYNOMIAL INTERPOLATION 137

4.1 and 4.2 for f(x) = cos(x). Then repeat the process with a nonpolynomial

function f(x) of your choice.

(@) Inthelinear formula (4.33),letx; — xo = hand . = (x — xp) /(%1 — %) =
(x — x0)/ h. Show that (4.33) reduces to the earlier formula of Problem 4.

(b) In the quadratic formula (4.34), let x; —xp =x; —x; =h and u = (x —
Xx0)/(x1 — xp). Show that (4.34) reduces to the earlier formula of Prob-

lem 9.
Let f(x) = x" for some integer n > 0. Let xo, xy, .. ., X, be m + 1 distinct num-
bers. Whatis f[xg, x1, ..., xn] form = n? Form > n?

Let f(x) = ¢*. Show that f[xg, x1, ..., x,] > Oforall values of m and all distinct
nodes {xo, x1, ..., Xn}.

When the nodes {x;} are evenly spaced, the formulas for the divided difference
and the interpolation polynomial P, (x) take simpler forms. Let x j = xo -+ jh for
J=0,£1,£2,...,andlet f; = f(x;). Define the first-order forward difference
of f(x) by

Af(x))=Afj=fini— fj
Define the second-order forward difference by

A (x;) = Afjar — Af; = [fia2 = fima] = [fje1 — £l
= fiy2 =2 i1+ fj

Define higher-order forward differences by

A fj = A — AL, k>2
Show that
@ flopxal=af

1
) flxj, xj1, Xjgo] = = ALf;

2!h2
1
(C) f[xj9xj+1$""xj+k]=mAkfji kZI
(a) Using (4.33) and Problem 33(a), derive the interpolation formula of
Problem 4.
(b) Using (4.34) and Problem 33(b), derive the interpolation formula of
Problem 9.

(c) Generalize (a) and (b) by applying Problem 33(c) to (4.35). Show that

P =) () AR u=222
k=0

138

Chapter 4 INTERPOLATION AND APPROXIMATION

using the binomial coefficient

(M)__M(M'-l)"'(u-—k-l—l) ®Y 1
k) k! ’ o)~

This is called Newton’s forward difference form of the interpolation poly-
nomial.

4.2. ERROR IN POLYNOMIAL INTERPOLATION

Theorem 4.2.1

Example 4.2.2

For a given function f(x) defined on an interval [a, b], let P, (x) denote the polynomial

of degree < n interpolating f(x) atn + 1 points xg, X1, . .., X, in [a, b]
n
Py(x) =) fGxp)L;(x) (4.40)
Jj=0

In this section, we consider carefully the error in polynomial interpolation, giving more
precise information on its behavior as x and n vary. We begin with a formula for the
€rror.

Let n > 0, let f(x) have n + 1 continuous derivatives on [a, b], and let xo, x1, ..., X»
be distinct node points in [a, b]. Then

(x —xo)(x —x1) -+ (x — xp)

rnr e @D

fx) = Po(x) =

for a < x < b, where ¢, is an unknown point between the minimum and maximum of
X0, X1, - .., Xn, and x.

We omit the proof, since it does not contain any useful additional information
regarding interpolation. A sketch of the case n = 1, linear interpolation, is given in
Problem 18.

Take f(x) = ¢* on [0, 1], and consider the error in linear interpolation to f(x) using
nodes xg and x; satisfying 0 < xo < x; < 1. From (4.41),

(x — x0)(x — xl)ecx

e" — Pl(x) = D)

4.42)
for some c, between the minimum and maximum of xo, x;, and x. For this example,
assume xg < x < x{. Then we note the interpolation error is negative, and we write

=D =)

& — Pi(x) = — >

Example 4.2.3

4.2 ERROR IN POLYNOMIAL INTERPOLATION 139

This shows that the error is approximately a quadratic: polynomial with roots at xo and
x1, provided that e is approximately constant for xo < x < x; (which s approximately
true if [xp, x;] is a short interval). Since x¢ < ¢, < x;, we have the upper and lower
bounds

(x1 —x)z(x — Xxo) & < Iex _ Pl(x)] < (x1 — x)(x — xg) e"‘

To obtain a bound independent of x, use

(r1=x)(x—x) B
WS 2 g hEmTw “4)
This follows easily by noting that (x; — x)(x — xo) is a quadratic with roots at xp and
x; and thus its maximum value occurs midway between the roots. Substituting x =
(xo + x1)/2 yields the value h2/8.
Noting that ™ < e on [0, 1], we have the bound

]’l2
¢ -Pm| == O0sxsysxs] (4.44)

independent of x, xo, and x;. Recall Example 4.1.2 of Section 4.1. With x = 0.826 and

~h = 0.01, we have

(0.01)2(2.72)

e — PL(x)| < 3

=0.0000340 (4.45)

The actual error is —0.0000276, which satisfies this bound.

Again let f(x) = ¢* on [0, 1], but consider the error in quadratic interpolation. Then

“

o = x0)(x —x)&x — %) o,

¢ — Py(x) = -

(4.46)

for some ¢, between the minimum and maximum of xo, x1, x,, and x. Assume xg, x, and
Xz are evenly spaced, andleth = x; — xp = x» — x1; assume that0 < xp < x < xp < 1.
As before, we have

(x = x0)(x — x1)(x — x3)

e — Py(x)| < 5 e' (447)
To proceed further, we use
- - - 3
o |G —)G = x|k 48
XpS<x<X 6 9\/5

140 Chapter 4 INTERPOLATION AND APPROXIMATION

-h h

Figure 4.4. y = wa(x)

This result is obtained by using elementary calculus in the following way. To simplify
the calculations, we consider the special case

(x+hx(x—h) x*—xh’
6 T 6

wo(x) = (4.49)

Its graph is shown in Figure 4.4. The cubic polynomial w,(x) is a translation along the
x-axis of the polynomial in (4.48), and it has the same shape and size. With (4.49), we
look for the points x at which

3x% — h?
0 = ! = ——
wz(x) 6

! Then x = +h/+/3, and

= (+35)| -3

proving (4.48). Using this in (4.47), we get

‘ he
& — Py(x)| < —= =~ 0.174h° 4.50
| 20| < 7 (4.50)
Forh=0.01,0<x <1,
¥ — Py(x)| < 1.74 x 1077 (4.51)

Compare this with the earlier result (4.45) for linear interpolation. =

4.2 ERROR IN POLYNOMIAL INTERPOLATION 141

4.2.1 Another Error Formula

Construct the interpolation formula P, (x) that interpolates to f (x) at the n + 2 nodes
X0, X1, ++ ., Xn, Xn+1. Using the Newton divided difference form gives us

Frp1(x) = Pp(x) + (x — x0)(x —x1) - -+ (x — %) f[X0, X1, -y Xn, Xpp1] (4.52)

with P, (x) interpolating f(x) at xo, X1, ..., x,. Using the interpolation property and
letting x = x,4.1, we have

f(xn—l-l) = Py(xnt1) + (xn-{—l —Xg): - (Xng1 — Xn) flx0, X1, ..., X, Xnt1]

Regard x4, as a variable point, distinct from xg, . .., x,, and rename it ¢. Moving the
P, term to the left side of the equation, we have

J@) = Bo(t) = (¢ — x0)(t — x1) -+ (t — %) fX0, X1, - ., X, 1] (4.53)

This is the interpolation error in P, (¢). From what was stated in the preceding section, if
S (x)isasufficiently differentiable function, then the divided difference flxo, x1, ..., X,
t] can be extended to ¢ a node point. Then the right side of (4.53) will be zero when
= X0, X1, .0y Xn.
Comparing (4.53) with (4.41), with x = ¢, we have two formulas for the interpola-
tion error: '
W, ()

_..__(n) F@HD () = W, () flx0, x1, ..., Xn, t]

with
W, () = (¢ — x0)(t = x1) -+ (t — %)

Canceling ¥, (¢) from both sides, we have

FO(e) = flxo, x1, ..., Xn, £] (4.54)

(n+1)!

with ¢, between the minimum and maximum of xg, x1, ..., x,, and ¢. Letm =n + 1
and ¢t = x,,. Then (4.54) becomes

F™(c)
m' =f[x0!x19~~'1xm-1’xm]
where
min{xy, ..., x,} < c < max{xg, ..., X}

This proves Theorem 4.1.7 of Section 4.1.

]
.

Mgy

142

Example 4.2.4

Chapter 4 INTERPOLATION AND APPROXIMATION

Usually we use formula (4.41) to bound the interpolation error, but occasionally
(4.53) is preferable. The derivation of error formulas for numerical integration methods
often uses (4.53).

4.2.2. Behavior of the Error

When we consider the error formula (4.41) or (4.53), the polynomial
W, (x) = (x —x0) -+ - (x — xp) (4.55)

is the most important quantity in determining the behavior of the error. We will examine
its behavior for xo < x < x, when the node points xg, ..., x, are evenly spaced.

For larger values of 7, say, n > 5, the values of W, (x) change greatly through the
interval xo < x < x,,. The values in [xo, x;] and [x,—1, x,] become much larger than the
values in the middle of [xo, x,]. This can be proved theoretically, but we only suggest
the result by looking at the graph of W, (x) when n = 6. This is given in Figure 4.5;
note the relatively larger values in [xg, x;] and [xs, x¢] as compared with the values in
[x2, x4]. As n increases, this disparity also increases.

When considering W, (x) as a part of the error formula (4.41) or (4.53) for f(x) —
P, (x), these remarks imply that the interpolation error at x is likely to be smaller when
it is near the middle of the node points. In practical interpolation problems, high-
degree polynomial interpolation with evenly spaced nodes is seldom used because of
these difficulties. However, we will learn in Section 4.6 that high-degree polynomial
interpolation with a suitably chosen set of node points can be very useful in obtaining
polynomial approximations to functions.

TN /\ -
X2 xM4 *5

0] *1 %6

Figure 4.5. y = Yg(x)

Let f(x) = cos(x), & = 0.2, n = 8, and then interpolate at x = 0.9.

Case (i) xo = 0.8, x3 = 2.4. Thus, x = 0.9 is in the first subinterval [x, x;]. By
direct calculation of P3(0.9),

c0s(0.9) — P5(0.9) = —5.51 x 10~

Example 4.2.5

PROBLEMS

4.2 ERRORIN POLYNOMIAL INTERPOLATION 143

Figure 4.6. The interpolation to 1/(1 + x2)

Case (i) xp = 0.2, x3 = 1.8. Thus, x = 0.9 is in the subinterval [x3, x4], where X4 18
the midpoint for the interpolation interval [xo, xg]. By direct calculation

cos(0.9) — P5(0.9) =2.26 x 10~1°

a factor of 24 smaller than in case (i).

Let f(x) =1/(1+x?) for =5 <x <5. Let n > 0 be an even integer, and define
h=10/n

xj=—5+ jh, Jj=0,1,2,...,n

Then it can be shown that for many points x in the interval [—5, 5], the sequence of
interpolating polynomials {P,(x)} does not converge to f(x) as n — co. To illustrate
the poor approximation of P,(x) to f(x) in this case, we give the graphs of f(x) and
Pyo(x) in Figure 4.6. The divergence of P,(x) from f(x) for |x| > 4 becomes worse as
n increases. =

1. Consider interpolating f(x) = sin(x) from a table of values of the function f
given at equally spaced values of x for 0 < x < 1.58; the x entries are given in
steps of & = 0.01.

(a) Boundthe error f(x) — Py(x) of linear interpolation in this table. The value
of x is to satisfy xp < x < x;, with xo and x; adjacent x entries in the table.

(b) Bound the error f(x) — P,(x) of quadratic interpolation. The value of x is
to satisfy xo < x < x, with xo, x;, and x, adjacent x entries in the table.

2. Repeat Problem 1 with f(x) = tan™!(x) on [0, 0.8].

144

Chapter 4 INTERPOLATION AND APPROXIMATION

3.

10.

Repeat Problem 1 with

flx) = /1 e dt
0

forO<x <1

Suppose a table of values of f (x) = sin(x), 0 < x < 1.58, is to be censtructed,

with the values of sin(x) given with a spacing of A.

(a) If linear interpolation is used in this table, how small should /4 be in order
for the interpolation error to be less than 10~%? For notational assumptions,
see Problem 1(a).

(b) If quadratic interpolation is used in this table, how small should / be in order
for the interpolation error to be less than 10757 For notational assumptions,
see Problem 1(b).

Repeat Problem 4, doing so for f(x) =log(x), 1 <x <7, with an interpolation
error tolerance of 5 x 1076,

Repeat Problem 4, doing so for f(x) = tan~!(x),0 < x < 1, with an interpolation
error tolerance of 5 x 1075. Note that this allows a straightforward calculation of
tan~! (x) for any x since '

tan~! (—x) = — tan™~' (x)

tan~! —1- = r_ tan‘l(x), x>0
X 2

Consider constructing a table of values of f(x) = J/x for 1< x < 100, with values
of f(x) given for x =0, k, 2h, Choose h so that when linear interpolation
is used in this table, the error is bounded by 5 x 1075. Discuss and compare the
linear interpolation error near x = 1 and x = 100.

Let f(x) = x* + +/2x3 + mx. Verify whether £[0, 1,2,3,4] = f [0, 1,7, ¢, —1].

Let f(x) = ap + a1x + - - - + a,x" be a polynomial of degree less than or equal to
n,andlet {xg, x1, . . ., x,} be distinct points. Whatis the value of f [x0, X1, ..., X21?

Bound the error of cubic interpolation to f(x) = ¢* on [0, 1] with evenly spaced
node points. .

Hint: Replace the bounding of

W3(x) = (x — x0)(x — x1)(x — x2)(x — x3), X <x <Xx3

~ with the bounding of its translate

W) = (5 34) (x+ 18) (x = 1) (x = 30)

4.2 ERROR IN POLYNOMIAL INTERPOLATION 145

11.

12.

13.

on the interval —%h <x< %h This generalizes the method used in obtaining

(4.48).

Consider using nodes

h
_— X1 =a+ —
ﬁ ! ﬁ

to linearly interpolate a function f(x) on the interval [a — h, a + k] for some real
numbers a and i, 2 > 0. Calculate a bound for

Xo=a—

max | f(x) — Pi(x)]
+h

a—-h<x<a

Using the illustrative function f (x) = e*, choose values for 4 and a and then draw
a graph to illustrate what you are calculating. This problem has applications in
solving differential and integral equations.

To visualize the change in the values of
Wn(x) = (x — x0)(x — x1) - (x — Xn)
as n increases and as x varies over [xg, x,], graph the special case
Vx)=x(x—1)---(x—n)

forO0 <x <n.Dothisforn =3,4,...,8.

For an interval [a, 4], define h = (b — a)/n for an integer n > 0. Define evenly
spaced node points by

xj=a+jh, j=0,1,....n
Thus, xo =a,x1 =a+h,...,x, = a -+ nh = b. Consider the polynomial
Wn(x) = (x = x0)(x —x1) -+ (¥ = X)
and show

|, ()| < nth™!, a<x<b)

Hint: Consider first a lower-order case such as n = 2 or 3. Also, consider sepa-
ratelythecasesxyg < x < X1, X <X < X3, ..., Xn_1 < X < X,. With each case,
bound the various factors x — x; by multiples of .

iy

146

Chapter 4 INTERPOLATION AND APPROXIMATION

14.

15.
16.

17.

18.

Let P, (x) be the degree n polynomial interpolating to f (x) = ¢* on[a, b] = [0, 1]
using evenly spaced node points (as defined in Problem 13). Using the main result
(*) shown in Problem 13, show that

max |ex—P,,(x)l-——>0 asn —» o0
O<x<1

Repeat Problem 14 with f (ﬁc) = sinx on [0, 7].

Consider computing the interpolating polynomial P, (x) for the function

F®) = oss

with a uniformly spaced subdivision of the given interval [a, b]. Study the inter-
polating polynomial and its error for the intervals [0, 2] and [—7, 7], for varying
n. Do so for n = 10, 20, 30, 40. Make observations on the error.

Hint: Graphs are useful, especially graphs of the interpolation error. Also, double
precision arithmetic is insufficient for n > 40.

Study the error in using evenly spaced node points (as defined in Problem 13) to
interpolate f(x) = tan™! x. Dosoontheinterval [—a, a]witha = 1, 2, 3, 4. Con-
struct P, (x) with n = 3,7, 11, 15, 19. Estimate the maximum of | f (x) — P,(x)|
on [—a, a] for each value of a and 7, and display these in a table. Also print out
graphs of the error for as many cases as possible. Comment on your results.

Consider the proof of the error formula for linear interpolation

(x — x0)(x — x1)

5 £

f@x) = Pi(x) =

with min{xg, X1, x} < ¢ < max{xg, x;, x}. From the construction of P;(x), the
error formula is clearly true if x = xg or x = x;. Thus, we consider only the case
x # X9, x;. Introduce

E@®) = f() — ()

and

t— -
G@) = E(t) — (t — x0)(t — x1) E)
(x — x0)(x — x1)
with ¢ varying and x fixed.
(@) Show G(xg) = G(x;) = G(x) =0.
(b) Using Rolle’s theorem or the mean value theorem, show that G'(z) has at
least two zeros; and then show that G”(¢) has at least one root, calling it c.

4.3 INTERPOLATION USING SPLINE FUNCTIONS ’ 147

(¢) Calculate E”(¢) and G”(t). Then evaluate G”(c) and solve for E(x) to
conclude the derivation of the error formula. This derivation generalizes to
a proof of the general result in Theorem 4.2.1 for any n > 1.

4.3. INTERPOLATION USING SPLINE FUNCTIONS

To motivate the definition and use of spline functions, we begin with the problem of
interpolating the data shown in Table 4.3. The simplest method of interpolation is
to connect the node points by straight-line segments; the resulting graph is shown in
Figure 4.7. This is called piecewise linear interpolation, and the associated interpolating
function is denoted by I(x). It agrees with the data, but it has the disadvantage of not
having a smooth graph. Most data will represent a smooth curved graph, one without
the corners of y = [(x). Consequently, we usually want to construct a smooth curve that
interpolates the given data points, but one that follows the shape of y = [(x).

The next choice of interpolation is to use polynomial interpolation. There are seven
data points, and thus we consider the interpolating polynomial Ps(x) of degree 6. Its
graph is shown in Figure 4.8 (note the change in vertical scale), and it differs markedly
from that of y = I(x). Although it is a smooth graph, it is quite different from that of
y = [(x) between some of the interpolation node points, for example,on 0 < x < 1.

Table 4.3. Interpolation Data Points

X 0 1 2 2.5 3 3.5 4
y 2.5 0.5 0.5 1.5 1.5 1.125 0
Y
A .
2 -
l —
I I ! > x
1 2 3 4

Figure 4.7. y = l(x): piecewise linear interpolation

148

Chapter 4 INTERPOLATION AND APPROXIMATION

Figure 4.8. y = Ps(x): polynomial interpolation

A third choice is to connect the data points of Table 4.3 by using a succession of
quadratic interpolating polynomials. We denote this functionon 0 < x < 4 by g(x), and
we give its graph in Figure 4.9. On each of the subintervals [0, 2], [2, 31, and [3, 4],
g(x) is the quadratic polynomial interpolating the data on that subinterval. The graph
of g(x) is somewhat smoother than y = I(x), and follows it more closely than does
y = Pg(x). Nonetheless, there is still a problem at the points x = 2 and x = 3 where
the graph has “corners”; the derivative ¢’(x) is discontinuous at such points. We wish
to find an interpolating function that is smooth and does not change too much between
the node points, when it is compared to the graph of y = I(x). For many applications,
however, the interpolating function ¢ (x) may be completely adequate as, for example,
with the numerical integration of the data.

[! 1 > X

1 2 3 4

Figure 4.9. 'y = g(x): piecewise quadratic interpolation

43 INTERPOLATION USING SPLINE FUNCTIONS 149

4.3.1 Spline Interpolation

To pose the problem more generally, suppose data points (x;, y;), i = 1,...,n, are
given. For simplicity, assume that

X] <Xy <o+ <Xy (4.56)

and let @ = x1, b = x,,. We seek a function s(x) defined on [a,] that interpolates the
data:

s(xi) = i, i=1,...,n 4.57)

For smoothness of s(x), we require that s'(x) and s”(x) be continuous. In addition,
we want the curve to follow the general shape given by the piecewise linear function
connecting the data points (x;, y;), as illustrated in Figure 4.7. The standard way in
which this has been done has been to ask that the derivative s’(x) not change too rapidly
between node points. This has been carried out by requiring the second derivative s”(x)
to be as small as possible and, more precisely, by requiring that

b
f [s”(x)1* dx (4.58)

be made as small as possible. This may not be a perfect mathematical realization of the
idea of a smooth shape-preserving interpolation function for the data {(x;, y;)}_,, but it
usually gives a very good interpolating function from a visual perspective.

‘There is a unique solution s(x) to this problem, and it satisfies the following:
S1. s(x) is a polynomial of degree < 3 on each subinterval [x;_, x;1,] =2,3,...,n;
S2. s(x), s'(x), and s”(x) are continuous fora < x < b;
S3. 57 (x1) = s"(x;) = 0.
The function s(x) is called the natural cubic spline function that interpolates the data
{(xi, y:)}. We will give a method for constructing s(x), and then apply it to the data in

Table 4.3. Then, we will return to a more general discussion of cubic spline functions
and interpolation with them.

4.3.2 Construction of the Interpolating Natural Cubic Spline
Introduce the variables My, ..., M, with .

My=s"(x), i=12..,n (4.59)

We will express s(x) in terms of the (unknown) values M;; then, we will produce a
system of linear equations from which the values M; can be calculated.

B

150

Chapter 4 INTERPOLATION AND APPROXIMATION

Since s(x) is cubic on each interval [x;.1, x;], the function s”(x) is linear on the
interval. A linear function is determined by its values at two points, and we use

S”(Xj_l) = Mj__)_, S”(Xj) = Mj (460)
Then
XYM —x_1)M;
5" (x) = o =XM1 + O = xj-1) L Xjo1 Sx < x5 (4.61)
Xj— Xj—i

We will now form the second antiderivative of s”(x) on [x;_1, x;] and apply the inter-
polating conditions

s(xj-1) = yj-1, s(xj) =y; (4.62)
After quite a bit of manipulation, this results in the cubic polynomial

(j —x)>Mj_q + (x — x;21)° M + (xj = x)yj_1 +(x —xj-1)y;
6(Xj —-x]-_;) Xj— Xj-1

s(x) =
| (4.63)
- ‘6'(36,' —x_)[x =)M+ (x — x;-1)M;]

for x;1 < x < x;. It can be checked directly that the second derivative of this formula
yields (4.61); and by direct substitution, (4.63) satisfies the interpolating conditions
(4.62).

Formula (4.63) applies to each of the intervals [x1, x2], ..., [*s-1, Xs]. The for-
mulas for adjacent intervals [x;_, x;] and [x;, x;41] will agree at their common point
x = x; because of the interpolating condition s (x ;) = y;, which is common to the defini-
tions. This implies that s (x) will be continuous over the entire interval [a, b]. Similarly,
formula (4.61) for s”(x) implies that it is continuous on [a, b].

To ensure the continuity of s'(x) over [a, b], the formulas for s'(x) on [x;_1, x;]
and [x;, x;41] are required to give the same value at their common point x = x;, for
j=2,3,...,n— 1. After a great deal of simplification, this leads to the following
system of linear equations:

Xj41 = X;

Xj—Xj-t — X

- X
; My + “M; + J+16 M
o o ’ (4.64)
:)’14-1 Yi Vi y1~1, j=23,...,n—1
Xj41 — Xj Xj— Xj-1

These n — 2 equations together with the earlier assumption (S3)
M =M,=0 (4.65)
leads to the values My, ..., M, and then to the interpolating function s(x). The linear

system (4.64) is called a tridiagonal system, and there are special methods for its solution.

Example 4.3.1

Example 4.3.2

4.3 INTERPOLATION USING SPLINE FUNCTIONS 151-

One of these is given in Chapter 6, Section 6.4; and most computer centers will have
special routines for tridiagonal systems of equations.

Calculate the natural cubic spline interpolating the data
{@.D.(2.3).6:3). (4)} (4.66)
The number of points is n = 4; and all x; — x;_; = 1. The system (4.64) becomes

-é-Ml +%M2+éM3 =%
1

(4.67)
%Mz + %Mg, + %M4 = 33
Together with (4.65), this yields
My=1, M;=0
Substituting into (4.63), we obtain
R J L J P) 1<x<2,
s)=1 -G+ 32 -Ix+4, 2<x<3, (4.68)
—Hrt G 3<x=<

Itisleft as an exercise to compute s’ (x) and s” (x) and to check that they are continuous.

Calculate the natural cubic spline interpolating the data in Table 4.3. Since there are
n = 7 points, the system (4.64) will contain five equations. The graph of the resulting
function s(x) is given in Figure 4.10; and for comparison we also include the graph
of y = I(x), the piecewise linear interpolant of Figure 4.7. The graph of y = s(x) is
generally quite similar to that of g (x) in Figure 4.9. But with s (x), the graph no longer
contains the corners or discontinuous changes in slope that are present in the graph of
y = q(x) atx = 2 and 3. To the eye, the graph of s(x) would seem a better interpolating
function than g (x) for the data of Table 4.3.

4.3.3 Other Interpolating Spline Functions

Up until this point, we have not considered the accuracy of the interpolating spline s(x).
This is satisfactory where only the data points are known, and we only want a smooth
curve that looks correct to the eye. But often, we want the spline to interpolate a known
function, and then we are also interested in accuracy.

Nty

152

Chapter 4 INTERPOLATION AND APPROXIMATION

0.5 1 1.5 2 2.5 3 3.5 4

Figure 4.10. Natural cubic spline interpolation (solid line) and piecewise linear
interpolation (dotted line)

Let f(x) be given on [a, b]. We will consider the case where the interpolation of
£ (x) is performed at evenly spaced values of x. Letn > 1,

b —
h=n C;, xj=a+({—Dh, j=12,...,n (4.69)

Let s,(x) be the natural cubic spline interpolating f(x) at xi, ..., Xn. Then it can be
shown that

max | f(x) = 5 ()| < ch® (4.70)

where ¢ depends on f”(a), f”(b), and maX,<x<p | /@ (x)|. The primary reason that
the approximation s,(x) does not converge more rapidly (i.e., have an error bound
with a higher power of k) is that f”(x) is generally nonzero at x = a and b, whereas
s!(a) = s, (b) = 0by definition. For functions f (x) with f”(a) = f"(b) = 0,the right-
hand side of (4.70) can be replaced by ch®.

To improve on s, (x), we canlook at other cubic spline functions s (x) that interpolate
f(x). Referring back to the general node-point definition (4.56), we say that s(x) is a
cubic spline on [a, b] if:

1. s(x) is cubic on each subinterval [x;_, xj1,
2. s(x), s'(x), and s”(x) are all continuous on [a, b].

In general, cubic splines are fairly smooth functions that are convenient to work with,
and they have come to be widely used in the past two decades in computer graphics and
in many areas of applied mathematics and statistics.

4.3 INTERPOLATION USING SPLINE FUNCTIONS 153

If 5(x) is again chosen to satisfy the earlier interpolating conditions of (4,57),
s) =y, i=1...,n

then the representation formula (4.63) and the tridiagonal system (4.64) are still valid.
This system contains n — 2 equations and the n unknowns Mj, ..., M,. By replacing
the endpoint conditions (4.65) with other conditions, we can obtain other interpolating
cubic splines.

If the data are obtained by evaluating a function f(x)

yi = f(x), i=1,...,n

then we choose endpoint conditions (or boundary conditions) for s(x) that will result in
a better approximation to f(x). If possible, require

S = f'(x), 50a) = f () (4.71)

or

s"Gx) = 1D, 5" (w) = () (4.72)

When combined with (4.63) and (4.64), either of these conditions leads to a unique
interpolating spline s(x), dependent on which of the conditions is chosen. In both
instances, the right-hand side of (4.70) can be replaced by ch*, where ¢ depends on
maxg<:<p | f@)]

If the derivatives of f(x) are not known, then extra interpolating end conditions can
also be used to ensure that the error bound of (4.70) is proportional to 4*. In particular,
suppose that

X1 <21 < X2, Xpn—-1 <22 < Xp
and suppose that f(z1), f(z2) are known. Then use the formula for s(x) in (4.63) and

s(z1) = f(z1), 5(z2) = f(z2) 4.73)

This will add two new equations to the system (4.64), one equation for M, and M,, and
a second equation for M,,_; and M,. This form of spline is generally preferable to the
interpolating natural cubic spline, and it is almost equally easy to produce. This is the
default form of spline interpolation that is implemented in MATLAB, and we discuss it
further below. The form of spline formed in this way-is said to satisfy the not-a-knot
interpolation boundary conditions. Figure 4.11 contains the graph of [(x) and the “not-
a-knot” interpolating cubic spline for the data given in Table 4.3 at the beginning of this
section (z; = 1, zz = 3.5). Compare this graph and Figure 4.10.

Interpolating cubic spline functions have become a popular way to represent data
analytically because they are relatively smooth (two continuous derivatives), they do

|

154

Chapter 4 INTERPOLATION AND APPROXIMATION

! ! ! i | ! ! P
g

0.5 1 15 2 2.5 3 3.5 4

Figure 4.11. 'The not-a-knot interpolating spline (solid line) and piecewise linear
interpolation (dotted line|

not have the rapid oscillation that sometimes occurs with higher-degree polynomial
interpolation, and they are reasonably easy to work with on a computer. They do not
replace polynomials, but they are a very useful extension of them.

Most academic computer centers will have several programs involving cubic splines,
for use in numerical integration, numerical differentiation, interpolation, and the curve-
fitting of data. The interpolation programs will generally allow a variety of endpoint
conditions, such as those given in (4.65) and (4.71) to (4.7 3). The student is well advised
to use these packages rather than attempting to write his or her own programs.

4.3.4 The MATLAB Program spline

The standard MATLAB package contains the function spline. It has several possible
calling sequences; the standard calling sequence is

y=spline(x_nodes,y_nodes,x)

This produces the cubic spline function s(x) whose graph passes through the points
{Gi,m) |i=1,...,n} with

(&, n;) = (x_nodes(i),y_nodes(i))

* and n the length of x_nodes (and y_nodes). The not-a-knot interpolation conditions

of (4.73) are used. The point (§2, 72) is the point (z1, f(z1)) of (4.73), and (£,—1, Mu—1)
is the point (z, f(z2)). Following construction of the cubic spline s(x), it is evaluated
at the abscissae given in x, and these values are output from spline to be stored in y.

Example 4.3.3

4.3 INTERPOLATION USING SPLINE FUNCTIONS 155

If one uses the statements

pp=spline(x_nodes,y_nodes)
[breaks,coefs,1,k,d]=unmkpp (pp)

then one can obtain the coefficients of a cubic polynomial representation of s{x) on each
subinterval determined by adjacent abscissae in x_nodes. More detailed information
on these commands can be obtained from the MATLAB help command. ‘

Approximate the function f(x) = ¢* on the interval [a, b] = [0, 1]. For n > 0, define
h=1/n. We use two different choices for the interpolation nodes. First we use the
choice

X1=0, JC2=h, X3:2h, ...,x,1+1=nh=1

and we call this “Choice #1.” Using spline, we produce the cubic spline interpolant
Sn,1(x) to f (x). With the not-a-knot interpolation conditions, the nodes Xy and x,, are the
points z; and z; of (4.73). For a general smooth function f(x), it usually turns out that
the magnitude of the error f(x) — s,,1(x) is largest around the endpoints of the interval
of approximation. For that reason, we also try “Choice #2” in which two new nodes are
inserted, the midpoints of the boundary subintervals [0, h] and [1 — &, 1]. The nodes
are now :

x1 =0, x2=%h, x3=h, x4a=2h, ..., xpp1=@m—1)h,
x,,+2=1——%—h, x,1+3=1

Using spline results in a cubic spline function that we denote by Sp,2(x). With the
not-a-knot interpolation conditions, the nodes x, and Xp42 are the points z; and z, of
(4.73). Generally, s, 2(x) is a more accurate approximation than is s, (x).

The cubic polynomials produced for s, 5(x) by spline for the intervals [x;, x;]
and [x,, x3] are the same, and thus we can use the polynomial for [0, %h] for the entire
interval [0, %]; and an analogous situation is true on [1 — A, h]. In Table 4.4 we give the
maximum errors

E® = max |f(x) — su4(x)]

O<x<1

for both choices of interpolation node points. =

Table 4.4. Cubic Spline Approximation to f(x) = e*

n E{ Ratio E® Ratio
5 1.01E -4 LIIE-5

10 6.92E —- 6 14.6 7.88E -7 14.1

20 4.56E -7 15.2 5.26E -8 15.0

40 2.92E -8 15.6 33%9E -9 15.5

156 Chapter 4 INTERPOLATION AND APPROXIMATION

PROBLEMS 1. Consider the data points {(0, 1), (1, 1), (2, 5)}.
(a) Find the piecewise linear interpolating function for the data.
(b) Find the quadratic interpolating polynomial.
(¢) Find the natural cubic spline that interpolates the data.

In all three cases, graph the interpolating functions for 0 < x < 2.

2. Consider the data

x|1 2 3 45
y|3 1 2 3 2

(a) Find the piecewise linear interpolating functions I(x).

(b) Find the cubic spline function s{x) that interpolates the data and satisfies the
not-a-knot boundary conditions (4.73). Note in this case thatn = 3,x; =1,
n=3xn=5%u=220=4

Graph both s(x) and /(x) for | <x <35.
3. Consider the data

x|0 12 1 2 3
ylo 14 1 -1 -1

(a) Find the piecewise linear interpolating function for the data.
(b) Find the piecewise quadratic interpolating function.
(¢) Find the natural cubic spline that interpolates the data.

(d) Find the not-a-knot interpolating cubic spline. When using (4.73), letx; = 0,
X2 = I,X3 = 3, andz1 = %,22 = 2.

Graph all four cases for0 < x < 3.
: 4. Consider these data:

x|0 1 2 25 3 4
y |14 06 10 065 06 10

Repeat Problem 3. But note that the piecewise quadratic interpolation will require
! modification. Use quadratic interpolation on [0, 2] and [2, 3]. For g(x) on [3, 4],
- construct the quadratic interpolating polynomial on [2.5, 4] and then use it on only
[3, 4]. The linear system for the cubic spline function is best solved with a linear
system solver like those given in Chapter 6, Section 6.4.

5. Use the MATLAB built-in function spline to interpolate the function f(x) =
1/ (1 +x?), =5 < x < 5, from Example 4.2.5, with the following sets of x nodes:

4.3

10.

INTERPOLATION USING SPLINE FUNCTIONS 157

@ {-5 -25,0, 25, 5},

@) {-5, —35, -2,0,2, 35, 5},

G {-5 —-45, -4, =3, =2, -1,0, 1, 2, 3, 4, 45, 5).

In each case, graph the spline function and the function f (x). Compare to Fig-
ure 4.6.

Show that the boundary conditions (4.71) lead to the respective equations

X2 —JC1M1 + xz—x1M2 - y2— N - f(x)
3 6 X2 — X1 (4 74)
Xn — Xp—1 M, |+ Xn — Xp—1 M, = f,(xn) _ Yn — Yn—1
6 3 Xn — Xp—1

Hint: Differentiate (4.63) on [x{, x5] and [x,_1, x,,], and then use 4.71).
(a) Solveforthe cubic spline that interpolates the data in (4.66), with the addition
of the boundary conditions (4.71),
shy=-1, J@=-%

Hint: Combine (4.74) in Problem 6 with (4.67), and use a linear system
solver to solve your linear system of four equations.

(b) Compare both the natural spline (4.68) and the present spline to the function
f(x) = 1/x from which the data were generated. Calculate fx)—s(x)
for a sampling of pointsin 1 < x < 4.

(@) Solve for the cubic spline that interpolates the data in (4.66), with the addition
of the boundary conditions (4.72),

s"(1) =2, 5"(4) = %

Hint: Combine M; = 2, 2144 = 515 with the equations (4.67).

(b) Compare this spline and the natural cubic spline (4.68) to the function fx)=
1/x from which the data were generated.

Find the cubic spline that satisfies the conditions

s =0, s(hH=1, s@)=2, sSO=0, ss"'2)=2
Also graph it. .
Is the following function a cubic spline on the interval 0 < x < 27

x—13 0<zx<I

S(")={ 2Ax—17°, l<x<2

158

Chapter 4 INTERPOLATION AND APPROXIMATION

11.

12.

13.

14.

15.

16.

17.

Define

() = —5 4+ 8x — 6x2 + 2x3, 1<x<2
=1 27 — 40x + 18x% — 2x3, 2<x<3

Verify that s(x) is a cubic spline function on [1,3]. Isita natural cubic spline
function on this interval?

Define
2x3, 0<x<l1
sx) =1 x> +3x2-3x+1, 1<x<2
9x2 — 15x +9, 2<x<3

Verify that s(x) is a cubic spline function on [0, 3]. Is it a natural cubic spline
function on this interval?

Define

X =352 4+2x+ 1, l<x<2

S(")z{ x4 ox?—22x+17, 2<x<3

Is s(x) a cubic spline function on [1, 3]? Is it a natural cubic spline function?

Is the following function a cubic spline on [0, 3]?

x3, 0<x<l1
s(x) =14 2x-—1, l<x<2
3x2 -9, 2<x<3

Define

x4+ 2x% 41, 1<x<2

S(x)z{_2x3+/3x2-—36x+25, 2<x<3

For a special value of 8, s(x) is a cubic spline function on [1, 3]. Find that value
of B8 and then verify that s(x) is a cubic spline function on [1,3]. Is it a natural
cubic spline function on this interval?

Is there a choice of coefficients {a, b, ¢, d} for which the following function is a
cubic spline? ’ ;

x+ 173, —2<x=<-1
sx) =1 ax®+bx*+cx+d, —-l1<x<1
(x —1)?%, l<x<2

(a) Formula (4.63) gives s(x) onxj—; < x < Xj. Write the corresponding for- ‘
mula when x; < x < Xj41. ‘

4.4 THE BEST APPROXIMATION PROBLEM 159

(b) - Form s'(x) for x;_; < x < x; and x; < x < xj41.

() Setx = x; in both formulas for s'(x), and require them to be equal. Derive
(4.64). ‘

18. Let s(x) be a cubic spline with a single node ¢ satisfying a < ¢ < b. Suppose
s(x) = 0fora < x < c. Show that for some constant d,

s(x) =d (x —¢)?, c<x<b

19. (a) Let[a, b] beagiveninterval and let g < ¢ < b. Define

_]0 as<x=<c
oe(x) = (x -)3, c<x<b

Show o, (x) is a cubic spline function on [a, b].
(b) Letx; <x; <--- < xy,let p(x) be an arbitrary polynomial of degree < 3,

and define
n—1
s =) bioy,(x) + px), x <x<x
j=2
with by, ..., b,_; arbitrary constants. The definition uses the definition of

o.(x) in part (a). Show s(x) is a cubic spline on [a, b] = [x, x,]. What are
the points at which s”(x) is not continuous? This formula can be shown
to represent all cubic splines on [x, x,]; but it is not recommended for
practical calculations because of ill-conditioning when solving for p(x) and
the coefficients {b;}_;.

20. To study the accuracy of cubic spline interpolation, use a package program to
construct interpolating splinesto y = ¢* on 0 < x < 1. Use evenly spaced nodes
on [0, 1] to generate the data, say, with 10, 20, and 40 subdivisions. Then check
the accuracy of the spline function at four times that many points. Do this for (a)
the cubic natural interpolating spline function, and (b) the spline satisfying (4.71)
or (4.72). Discuss your results. How does the error behave as the number of
subdivisions is doubled?

4.4. THE BEST APPROXIMATION PROBLEM

In this section we look at the concept of best possible approximation. This is illustrated
with improvements to the Taylor polynomials for fx) =¢€*.

To understand how much it is possible to improve on the Taylor series approxi-
mation, we look at the concept of best possible approximation. Let f(x) be a given

oty

160

Example 4.4.1

Example 4.4.2

Chapter 4 INTERPOLATION AND APPROXIMATION

function that is continuous on some interval a < x < b. If p(x) is a polynomial, then
we are interested in measuring

E(p) = max |f(x) = p(o)| *75)

the maximum possible error in the approximation of f(x) by p(x) on the interval [a, b].
For each degree n > 0, define

on(f) = . ngnglqE (p)
sr (4.76)

= min [max |f(x) — P(x)|]

deg(p)<n | asx=<b

This is the smallest possible value for E(p) that can be attained with a polynomial of
degree < n. It is called the minimax error. It can be shown that there is a unique poly-
nomial of degree < n for which the maximum error on [a, blis p,(f). This polynomial
is called the minimax polynomial approximation of order n, and we denote it here by

m,(x).

Let f(x) = ¢* on —1 < x < 1, and consider linear polynomial approximations to f(x).
From Section 1.2, the linear Taylor polynomial is

hx)=14+x 4.77)
and by direct computation,

max_|e* —#;(x)| =0.718 (4.78)

—-1=x<l
By using methods not discussed here, the linear minimax polynomial to e*on[—1,1]is

my(x) = 1.2643 + 1.1752x 4.79)

and
max |e* — my(x)| = 0.279 (4.80)
—l=x=

The graphs of these two linear polynomials are given in Figure 4.12, along with that
ofe*. =

Againlet f(x) = * for —1 < x < 1. We compare the maximum errors (4.75) for both
the degree n Taylor polynomial #,(x) and the degree n minimax polynomial approxi-
mation m, (x). These results are shown in Table 4.5 for several values of n. Note that
the accuracy of m, (x) relative to that of #,(x) becomes greater as n increases. This is a

4.4 THE BEST APPROXIMATION PROBLEM ‘ 161

I L > x
-1 1
Figure 4.12. Two linear approximations to ¢*

Table 4.5. Taylor and Minimax Errors for ¢* on [—1, 1]

Maximum Error in:
n £ (x) my(x)
1 7.18E — 1 2.79E — 1
2 2.18E -1 4.50E — 2
3 5.16E — 2 5.53E — 3
4 9.95E — 3 547E—4
5 1.62E — 3 4.52E — 5 .
6 2.26E — 4 321E -6
7 2.79E — 5 2.00E — 7
8 3.06E —6 1.IIE -8
9 3.01E -7 5.52E — 10

general characteristic of minimax approximations. This example is not as dramatic as
for many functions f (x) because the Taylor series for,e* converges very rapidly.

To further examine the differences in the Taylor and minimax approximations, we
present graphs of the errors when n = 3. We have

B5) = 14+x + Lx2 4 1y

4.81
m3(x) = 0.994579 + 0.995668x -+ 0.542973x2 + 0.179533x3 @81

FEevEET S

iy

162

Chapter 4 INTERPOLATION AND APPROXIMATION

A
0.0516 -
! e I > X
-1 1
Figure 4.13. € — t:(x)
y
A
0.00553
L L > X
-1 1
-0.00553 |-

Figure 4.14. " —ms(x)

The graphs are shown in Figures 4.13 and 4.14. Note that the vertical scales are quite
different.

These examples illustrate several general properties of the minimax approximation
m, (x) for approximating a function f(x) on an interval [a, b]. First, m,(x) is usually
a significant improvement on the Taylor polynomial #,(x). This means that to have
an approximation with a given degree of accuracy, the minimax approximation will be
of lower degree than the Taylor polynomial of equivalent accuracy, often much lower.
We note that the actual degree of m,(x) may be less than 7, just as is true with the
Taylor polynomial #,(x), and we still refer to m,(x) as “the minimax approximation of
degree n.”

A second characteristic of m,, (x) is that the larger values of the error f(x) — m,(x)
are dispersed over the entire interval [a, b]. In comparison, the Taylor error Fx) = ty(x)

4.4 THE BEST APPROXIMATION PROBLEM ‘ 163

is much smaller around the point of expansion than at other points of the interval [a, b].
In some sense, the smaller sizes for f(x) ~ m, (x) are obtained by distributing the error
values more uniformly throughout the interval. An associated third characteristic is that
the error f(x) — m,(x) is oscillatory on [a, b], as illustrated in Figure 4.14. It can be
shown that this error will change sign at least 7 + 1 times inside the interval [q, b], and
the sizes of the oscillations will be equal.

These properties can be used to construct m, (x), but it is still a process that is best
left to an expert. Programs to do this are available in most computer center libraries.
Our approach will be to use these properties to motivate the method given in Section
4.6, which gives a polynomial close to the minimax approximation, and is much easier
to construct. ‘

4.4.1 Accuracy of the Minimax Approximation

From the above examples for f(x) = ¢*, it appears that m,(x) is very accurate for
relatively small values of n. This can be made more precise for some commonly occur-
ring functions such as e*, cos(x), and others. Assume f(x) has an infinite number of
continuous derivatives on an interval [a, b], and let m, (x) be the minimax approximation
of degree n for f(x) on [a, b]. Then the minimax error satisfies

_ n+41
M max If(n+1)(x)l (482)

<
pn(f) < (n+ 1DI2" a=x<b

A derivation of this bound follows from the results of Section 4.6. This error bound will
not always become smaller with increasing #, but it will give a fairly accurate bound for
many common functions f(x).

Table 4.6. Bound on p,(¢*)

n Bound (4.82) on(f)

1 6.80E — 1 279E—1
2 113E ~ 1 450E—2

3 142E — 2 5.53E -3

4 1.42E — 3 S4TE -4

5 1.18E — 4 452E—5

6 8.43E — 6 321E—6

7 527E -7 2.00E — 7

Example 4.4.3 Let f(x) = ¢* for —1 < x < 1. Then (4.82) becomes

on (4.83)

@) < —
(n + 12"

Table 4.6 gives these values for various 7, along with the corresponding exact value for

Mty

164

PROBLEMS

Chapter 4 INTERPOLATION AND APPROXIMATION

pn(f) from Table 4.5. The computed value overestimates the true value by a factor of
about 2.5, but this is still considered a fairly accurate estimator of p,(f). =

1.

2.

Verify (4.78) and (4.80).

(a) For f(x) =tan~1(x), calculate the Taylor approximations #; (x) and #;(x).
Also find their maximum errors relative to tan~'(x) on [—1, 1].

(b) The linear and cubic minimax polynomials for fx) =tan~'(x) on [-1, 1]
are, respectively,

mi(x) = 0.833278x
m3(x) = 0.97238588x — 0.19193797x3

Find their maximum errors on [~1, 1].
(¢) Graph f(x) — t3(x) and f(x) — ms(x) on [—1, 1].

With many functions f (x), various identities can be used to reduce the interval of
approximation from one of very large or infinite extent to a relatively small finite
interval. For example, with f(x) = e*, use

1
ef = — ifx <0
-X
Also, if m < x < m + 1 for some m > 1, then
e =e"e, y=x—m, 0<y<l1

These two identities reduce the evaluation of e* to that of ordinary multiplication,
=g e, multlplylng m terms together; and the evaluation of e” is needed
with y between 0 and 1.

(a) With this as motivation, compute the bound (4.82) with f(x) = ¢* on [0, 1]
andletn = 1,2, ..., 7. Compare these results to those given in Table 4.6.

(b) To check the accuracy of (a), compute the exact error in m3 (x) for the interval
[0, 1], with
m3(x) = 0.9994552 + 1.0166023x -+ 0.4217030x> +0.2799765x>

Plot the graph of ¢* — m3(x) on [0, 1].

4.5 CHEBYSHEV POLYNOMIALS 165

4. In analogy with the interval reduction discussion in Problem 3, write a section
of MATLAB code to reduce the evaluation of cos(x) to that of cos(y), where
0 <y < x/2 for some y related to x.

5. (a) Compute the bound (4.82) for fx)=cos(x),0<x < /2, forn=1,2,
.7

(b) To check the accuracy of (a), compute the exact error in m3(x) = cos(x) on
[0, /2], where

m3(x) = 0.9986329 + 0.0296140x — 0.6008616x> + 0.1125060x>
(c) Graph cos(x) — m3(x) on [0, /2]

6. Explain why a natural interval for approximating f(x) = logx on a binary com-
puter is [a, b] = [1, 2]. Give an algorithm for reducing the evaluation of log x for
general x > 0 to that of evaluating log y for a suitable yin[1,2].

7. (@ For f(x) = logx, bound the minimax approximation error p,(f) on 1 <
x < 2. Find a bound for each case n > 1, and have the bound converge to
Zero as n — oo.

(b) Find the Taylor polynomial 3 (x) of dégree 3 for f(x) = log x about x = %
What is its maximum error on 1 < x < 29

(¢) For f(x) = log(x) and the interval [1,2],
m3(x) = —1.492776 + 2.112632x — 0.729104x2 + 0.109690x3

Find p3(f) and graph f(x) — m3(x) on [1,2]. Compare 3(x) and m3(x).
8. (a) Verify the identities
tan"l(~x) = —tan"(x)
tan"l(x) :: —725 — tan™! (:tl—) , x>0
(b) With these, what smaller interval can be used to approximate the following?

F(x) =tan"!(x), —00 <X < 0

4.5. CHEBYSHEV POLYNOMIALS ’

We introduce a family of polynomials, the Chebyshev polynomials, that are used in many
parts of numerical analysis and, more generally, in mathematics and physics. A few of
their properties will be given in this section, and then they will be used in Section 4.6 to
produce a polynomial approximation close to the minimax approximation.

166

Chapter 4 INTERPOLATION AND APPROXIMATION

For an integer n > 0, define the function

T, (x) = cos (ncos™' x)

~l=x<1 (4.84)

This may not appear to be a polynomial, but we will show it is a polynomial of degree
n. To simplify the manipulation of (4.84), we introduce ’

6 = cos”l(x) or x = cos(f),
Then
T (x) = cos(nb)

Graphs of the Chebyshev polynomials Tp(x), 71 (x),
and 4.16.

0<6<m (4.85)

(4.86)

..., Ta(x) are given in Figures 4.15

y
4

\\ 1 Ty II

\ o
\\ D !
QF
\ S b
\ ‘ /
\ y T,(x)
\ . /

1 \\ , y] I >
-1 \ Il 1
\ /

A /
\ o /
N /
AN /

\ /

N /

\\ W - /
-1

Figure 4.15. The graphs of Ty(x), Ti(x), T2(x)

4.5 CHEBYSHEV POLYNOMIALS ' 167

A
\ N
i /
‘ FRRCE
! \
|] \ 1
1 / \ 1
|] \ I
i I} \ I
1 I \ I
14 } Y L > x
) T;(x)
! A I
i 1 \ 1
\ ! \)
\ ! \ 1
\] \]
\ 7 \VAN |
_/ A ¥

Figure 4.16. 'The graphs of T3(x), Tu(x)

Example 4.5.1 (a) Letn =0. Then
To(x) =cos(0-0) =1

(b) Letn=1. Then
Ti(x) =cos(@) =x

() Letn = 2. Then using a common trigonometric identity, we obtain

Ty (x) = cos(20) = 2cos?(0) — 1 = 2x% — 1

4.5.1 The Triple Recursion Relation

Recall the trigonometric addition formulas
cos(a & B) = cos(e) cos(B) F sin(a) sin(B)
For any n > 1, apply these identities to get
Typ1(x) = cos[(n + 1)8] = cos(nb + 9)
= cos(nf) cos(f) — sin(nd) sin(9)

Ts-1(x) = cos[(n — 1)8] = cos(nd — 8)
= cos(n6) cos(#) + sin(nd) sin(9)

168

Example 4.5.2

Chapter 4 INTERPOLATION AND APPROXIMATION

Add these two equations, and then use (4.85) and (4.86) to obtain

Tni1(x) + Ty—1(x) = 2 cos(nf) cos(P) = 2xT,(x)
Toy1(x) = 2x T, (x) — Th—1(x), nxl1 (4.87)

This is called the triple recursion relation for the Chebyshev polynomials. It is often
used in evaluating them, rather than using the explicit formula (4.84).

(a) Letn =2 in (4.87). Using the previously computed values of Ti(x) and T(x),
we obtain

T3(x) = 2xTr(x) — Ty (x) = 2x(2x> — 1) — x
=4dx3 - 3x

(b) Letrn =3. Then

Ty(x) = 2xTs(x) — To(x) = 2x(4x> — 3x) — 2x* — 1)
= 8x* — 8'x2v+ 1 =

4.5.2 The Minimum Size Property
Before stating the main result, we note that
[T,(x) =1, -1=x=1 (4.88)

for all n > 0. Also, note that

T,(x) = 2" 1x" + lower-degree terms, n>1 (4.89)
The first result follows directly from the definition (4.84) using the bound |cos (n8)| < 1
[cf. (4.86)]. The second can be proved by using mathematical induction and the recursion
relation (4.87). Note that the earlier computations of T, T3, T3, T are also examples of

(4.89). .
Introduce a modified version of T, (x

~ 1
T.(x) = FT"(x) = x" + lower-degree terms, n>1 (4.90)
From (4.88) and (4.89),

N 1
L] <5, —lsxsl nzl 4.91)

Theorem 4.5.3

PROBLEMS

4.5 CHEBYSHEV POLYNOMIALS : 169 _

A polynomial whose highest-degree term has a coefficient of [1 is called a monic poly-
nomial. Formula (4.91) states that the monic polynomial 7, (x) has size 1/2"~!
—1 < x <1, and this becomes smaller as the degree increases. In comparison,

max |x f =1
—1<x<1

Thus, x” is a monic polynomial whose size does not change with increasing 7.

Letn > 1 be an integer, and consider all possible monic polynomials of degree #. Then
the degree n monic polynomial with the smallest maximum absolute value on [—1, 1] is
the modified Chebyshev polynomial T, (x), and its maximum value on [—1, 1]is 127",

This theorem leads to a number of useful applications for Chebyshev polynomials,
one of which we consider in the next section. A proof of the theorem is suggested in
Problem 10.

=

Find T5(x) explicitly in polynomial form, and then graphiton —1 < x < 1.
2. Demonstrate as best you can why (4.89) is true.

3. From (4.84), we know that |7,,(x)] < 1on[-1, 1] and 7,,(1) = 1. Find a general
formula for the points x at which T, (x) = £1. How many such points are there
on[-1,1]?

Hint: Begin with a special case such as n = 3.

4. Evaluate T,(0.5) for 2 < n < 10, without using the definitions (4.84) to (4.86).
Use Tp(0.5) = 1, T;(0.5) = 0.5.

S. Suppose that we require Ty(x), T3 (x), . . ., T,(x) for a particular value of x. Do a
count of the number of multiplications that are needed to produce these values if
we use the triple recursion formula (4.87).

6. Letg(x) be a polynomial of degree < n — 1, and consider

max

max [x" —g(x)|

What is the smallest possible value for this quantity? Solve for the ¢ (x) for which
the smallest value is attained.
7. Forn,m > 0 and n # m, show

T(x)T (x)
-1 1 —-x2

This is called the orthogonality relation for Chebyshev polynomials.
Hint: Use (4.84) and the change of variable x = cos 9.

170 Chapter 4 INTERPOLATION AND APPROXIMATION

8. The functions

. 1 ,

Sn(x) = mT"“(x)’ nz=0
are called Chebyshev polynomials _of the second kind.
(@) Calculate So(x), S1(x), S2(x), S3(x).
(b) Show

_ sin(n + 1)0

Sp(x) = with x = cos 6

sin @

for0<6 <m.

" (¢) Use addition formulas for sin(a £ B) to produce a triple recursion formula
for Sp41(x).

9, The monomials {x/ | j = 0} can be expressed as combinations of the Chebyshev
polynomials. Easily, 1 = To(x) and x = T1(x). Next,

x? = 4N + 1] = jTo(x) + 5 To(x)

(@) Proceeding similarly, express x> and x* as combinations of Chebyshev poly-
nomials. '

' E ' ‘ (b) Show that for each n > 0, it is possible to write x" in the form
x" = Qn,n Tn(x) + an,n-—-lTn—l(x) + -+ an,OTO(x) 4.92)

for a suitable choice of coefficients {a,, ; };‘.=O.

(¢) Show
1t oxt 2 (! x"T;(x)
Ao = — —dx, a, ;= — = dx
™0 N[-1«/1-—x2 T o JT= 22
for j > 0.

Hint: Use Problem 7. Multiply both sides of (4.92) by T;(x)/+/1 — x?
and integrate over [—1, 1].

10. To indicate the proof of Theorem 4.5.3, consider the case of degree n = 3.
(a) Using Problem 3, find the values of x for which

iy,

Ty(x) = 1

Call these values x3 < x3 < X1 < Xp.

4.6 A NEAR-MINIMAX APPROXIMATION METHOD 171

(b) Assume there is another monic polynomial g (x) for which
. 1 1
@ _max lg(x)| < 1=7

(i) deg(q) <3.
(¢) - Evaluate the polynomial
R(x) = T3(x) - q(x)
at xg, x1, X3, x3. Show that
R(xo) > 0, R(xy) <0, R(x) > 0, R(x3) <0

(d) Show R(x) has degree < 2 and that it must have at least three roots.

(e) Show T’g(x) = q(x), contrary to the assumption (i) in (b). This proves that
there is no smaller maximum on [—1, 1] than % for a monic polynomial of
degree 3.

4.6. A NEAR-MINIMAX APPROXIMATION METHOD

Since we are looking for polynomial approximations to a given function f(x), it would
seemreasonable to consider using an interpolating polynomial. The most obvious choice
is to choose an evenly spaced set of interpolation node points on the interval g <x<b
of interest. Unfortunately, this often gives an interpolating polynomial that is a very
poor approximation to f (x), for reasons we will not go into here. This was illustrated in
Figure 4.6, Example 4.2.4 of Section 4.2. To consider interpolation in a more methodical
way, we will examine it by means of the error formula (4.41), also from Section 4.2.

To simplify the presentation, we thoose the special interval —1 < x < 1 as the
approximation interval for f(x), and we initially limit the degree of the approximating
polynomial to n = 3. Let x,, X1, X2, x3 be the interpolation node points in [—1, 1], and
let c3(x) denote the polynomial of degree < 3 that interpolates f(x) at xo, x1, x5, and
x3. Then from (4.41), the interpolation error is given by

@) —c3(x) = (o = x0)(x — x1)(x — x2)(x — x3)

2 e (4.93)

for —1 < x < 1 and for some ¢, in [—1, 1]. The nodes xo, x1, x5, x3 are to be chosen so
that the maximum value of | f(x) —c3(x)} on [~1, 1] is made as small as possible.

Looking at the right side of (4.93), we see that the only quantity we can use to
influence the size of the error is the degree 4 polynomial

w(x) = (x — x0)(x —x)(x = x2)(x — x3) (4.94)

g

172

Example 4.6.1

Chapter 4 INTERPOLATION AND APPROXIMATION

We want to choose the interpolation points xg, x;, X2, X3 so that

_max | (x)] (4.95)

is made as small as possible.
If w(x) is multiplied out, it is fairly easy to see that

w(x) = x* + lower-degree terms

This is a monic polynomial of degree 4. From Theorem 4.5.3 in the preceding section,
the smallest possible value for (4.95) is obtained with

w(x) = T‘ﬁ;f) = %(8;;4 —~8x2+1) (4.96)

and the smallest value of (4.95) is 1/2 in this case.

The choice (4.96) defines implicitly the interpolation node points. From (4.94), the
node points are the zeros of w(x), and from (4.96), they must therefore be the zeros of
T4(x). The node points could be calculated by numerically finding the roots of the right
side of (4.96); but there is a simpler procedure, which is also much better to use when
the polynomial degree becomes larger.

Look at the definition (4.84), (4.85). In our case,

T4(x) = cos(46), x = cos(8)

This is zero when

T 37 Sn T

4 =+ —, +—, +r, £ L,
9 2 2 2 2
3 57 T

0=x—, t—, £—, £—, ...
8’ 8 8 8

T 3 S5 T O
X = COS <§) , COS (?) , COS (?) , COS (-é-) , COS (-é—) e 4.97)

using cos(—8) = cos(9). The first four values of x are distinct, but the successive values
repeat the first four values. Thus, when we evaluate (4.97), the nodes are approximately

+0.382683, +0.923880 (4.98)

Let f(x) = ¢* on [—1, 1], and use the nodes (4.98) to produce the interpolating poly-
nomials ¢3(x) of degree 3. Table 4.7 lists the nodes, function values, and divided differ-
ences needed for Newton’s divided difference formula for the interpolating polynomial
“4.35). =

Example 4.6.2

46 A NEAR-MiNIMAX APPROXIMATION METHOD ‘ 173 .

Table 4.7. Interpolation Data for c;(x) v

i X; F) SFlxo, ..., %]
0 0.923880 2.5190442 2.5190442
1 0.382683 1.4662138 ©1.9453769
2 —0.382683 0.6820288 0.7047420
3 —0.923880 0.3969760 0.1751757

By evaluating c;(x) at a large number of points, we find that

max |e* — c3(x)| = 0.00666 (4.99)

—-1=<x<1

The graph of e* — c3(x) is given in Figure 4.17. Compare this error to the corresponding
value from Table 4.5

p3(e®) = 0.00553

and compare the graph to that given in Figure 4.14 for m3(x) ~ ¢*. &

The above construction of c3(x) generalizes to finding a degree n near-minimax
approximation to f(x) on [—1, 1]. The interpolation error is given by

X =x0) - (X —x,)
F@ e = CEII) pney icigr o
y hd
A
0.00666 |-
= R
-0.00624 -

Figure 4.17. ¢* — c;(x) with Chebyshev nodes

3nnwmm

174

Example 4.6.3

Chapter 4 INTERPOLATION AND APPROXIMATION

and we seek to minimize

max |(x = x0) - (& = 3) @.101)

—-1=<x<
The polynomial being minimized is monic of degree n + 1. And from Theorem

4.5.3, this minimum is attained by the monic polynomial

1
> 1 ()

Thus, the interpolation nodes are the zeros of 7,41 (x); and by the procedure leading to
(4.97), they are given by

= CO 2j+1 =0,1 4.102
X; = CO8 2n+2n s j=01...,n .102)

The near-minimax approximation ¢, (x) of degree is obtained by interpolating to f (x)
at these n + 1 nodes on [—1, 1].

Let f(x) = ¢*. Then the maximum error in ¢,(x) on [—1, 1] is given in Table 4.8. For
comparison, we also include the corresponding minimax errors o, (x). These figures
show that for practical purposes, ¢,(x) is.a satisfactory replacement for the minimax
approximation m,(x). =

MATLAB PROGRAM. We give a program for constructing and evaluating the near-
minimax approximation ¢, (x) for a given function f(x) on [—1, 1]. The polynomial .
cn(x) is written in the Newton divided difference form of the interpolating polynomial;
and it is evaluated using the nested multiplication method described in (4.39) of Section
4.1. Note that the programs divdif and interp from Section 4.1 are used by the .
program.

Table 4.8. Near-Minimax Errors for ¢* on [—1, 1]

n max |e* — ¢, (x)] onle®)

1 372E—1 2.79E — 1
2 5.65E — 2 4.50E — 2
3 6.66E — 3 5.53E -3
4 6.40E — 4 5476 -4
5 518E—5 452E-5
6 3.62E—6 32IE-6

4.6 A NEAR-MINIMAX APPROXIMATION METHOD 175

The program uses f(x) = e, but this is easily changed to some other function by
changing the function subprogram fcn. The maximum error

_max le* — cu(x)]

is estimated by evaluating the error at 501 evenly spaced points x in [—1, 1]. The program
outputs the interpolation nodes, corresponding function values, and divided differences,
so that ¢, (x) can be evaluated in a separately constructed program.

function [nodes, fcn_values, div_diff_fen] = chebyshev_interp(n)
%

% This creates an interpolant of degree n to the function

% fen(x) on [-1,1], which is given below by a function

% subprogram. The nodes are the Chebyshev zeroes of the

degree n+l Chebyshev polynomial on [-1,1]. The program

% gives two plots: first the true function and its

% interpolant, and second, the error in the interpolation.

3

=

% Create the nodes and associated divided differences.
h = pi/(2%(n+1));

nodes = cos(h*[1:2:2%n+1]);

fen_values = fcen(nodes);

div_diff_fcn = divdif (nodes,fcn_values);

% Create the points at which the functions are to be
% graphed.

x_eval = -1:.002:1;

true_fcn = fen(x_eval);

y-eval = interp(nodes,div_diff.fcn,x_eval);

% Create the window for the graph of the function
% and its interpolant.

m = min([min(true_fcn) ,min(y_eval)l);

M = max([max(true_fcn) ,max(y_eval)]);
axis([-1.1,1.1,m,M])

hold on

% Create the graph of the function and its interpolant.
plot(x_eval,true_fcn,’r’)

plot(x_eval,y_eval,’:’)

legend("True function’,’Interpolant’,0)
plot(nodes,fcn_values,’.’, ’MarkerSize’,6)

hold off

176

Chapter 4 INTERPOLATION AND APPROXIMATION

pause
clf

% Create the window for the graph of the error.
error = true_fcn - y_eval;

M = max(error);

m = min(error);

axis([-1.1,1.1,m,MD)

hold on

% Create the graph of the error in the interpolant.
plot(x_eval,error,’r’)
hold off

% Print the maximum error.
disp([’maximum error = ’ ,num2str (max(abs (error)))1)

function fval = fcn(x)
fval = exp(x);

For a practical problem, we would have f(x) evaluated by some accurate, but
inefficient method, often a Taylor polynomial. This approximation would be given in
the function subprogram fcn(x), to be used by the main program to produce a more
efficient approximation. Ore other difficulty is that most functions do not have [—1, 1]
as the interval on which we wish to approximate them. This limitation is removed in
Problem 4.

4.6.1 Odd and Even Functions

A word of warning needs to be given regarding the use of this algorithm. If f(x) is what

is called an even or odd function on [—1, 1], then n should be chosen in a more restricted
way. We say f(x) is even if

f(=x) = f(x), all x (4.103)

Anexample is f(x) = cos(x). Such functions have graphs that are symmetric about the
y-axis. We say f(x) is odd if

f=x)=—fx), all x (4.104)

An example is f(x) = sin(x). Such functions are said to be symmetric about the origin.

PROBLEMS

4.6 A NEAR-MINIMAX APPROXIMATION METHOD 177

For these two cases, choose n in the above algorithm as follows:

If f(x) is odd, then choose n even.

If f(x) is even, then choose n odd. (4.105)

This will result in ¢, (x) having degree only n — 1, but it will give an appropriate formula.
The difficulty arises from the following. If a polynomial is odd as a function, as in (4.104),
then ¢, (x) will have only odd degree terms; and if ¢, (x) is even, then it will have only
even degree terms. The restriction (4.105) will take this difficulty into account in using

~ the program while also giving good accuracy. See Atkinson (1989, Section 4.7) for a

further discussion.

1. (a) Demonstrate that there are only four distinct values in (4.97).
(b) Show that the zeros of 7,41 (x) are given by (4.102).

2. Give the interpolation nodes for the linear near-minimax approximation of this
section, for the interval [—1, 1]. Give the linear near-minimax approximation for
f(x)=¢€e"on[-1,1].

3. (a) Implement the program given in this section. Include a printout of either the
divided differences and nodes or the errors; these can be used to generate a
graph of the error function.

(b) Calculate the cubic near-minimax approximation for f(x) = tan~!(x) on
[—1, 1]. Compare it to the cubic minimax approximation given in Problem
2(b) of Section 4.4. .
Note: Use n = 41in the program, based on (4.105), because tan~!(x) is an
odd function on [—1, 1].

4. Most functions do not have [—1, 1] as the interval on which they are to be approxi-
mated. Suppose g(¢) is to be evaluated fora < ¢t < b. Then define a new function

f(x)on[-1,1] by .

b+a)+xb—a)
2

f(x)=g[] —1<x<1

Here
t=3[(+a)+x(b—a)]

represents a linear change of variable. We now approximate f(x) on [—1, 1].

As a specific example, produce the cubic néar-minimax approximation for
g(t) = ¢’,0 <t < 1. Compare this to the minimax approximation given in Prob-
lem 3(b) of Section 4.4.

S. Find the cubic near-minimax approximation to g (¢) = cos(z),0 < ¢ < /2. Com-
pare it to the minimax approximation given in Problem 5(b) of Section 4.4.

L4
(Rl
BT,

10.

2 11.

178 Chapter 4 INTERPOLATION AND APPROXIMATION

Find the maximum error in the degree n near-minimax approximation to g(t) =
tan~'(z),0 <t < 1. Dothisforn =1,2,...,6.

Repeat Problem 6 with g(z) =log(t),1 <t < 2.
Repeat Problem 6 for

.
g(r).—_lf S0 e, C1<r<1
t Jo X

To initially evaluate g(z), use a Taylor polynomial approximation, say, with an
accuracy of 5 x 1015 on the interval —1 <t < 1. Write a MaTLAB function
to evaluate this polynomial, following the example of Sintx in Section 1.3 of
Chapter 1.

Repeat Problem 8 for the function

1 et —1
g(t)=—/e du, —l<t<l
t Jo u

Show that if a polynomial p(x) is an even function, satisfying (4.103), then all
odd degree terms in p(x) will be zero. Extend this result to polynomials that are
odd functions. :

By using (4.100) and (4.101), along with Theorem 4.5.3, derive the bound (4.82)
of Section 4.4 in the case [a, b] = [—1, 1].

4.7. LEAST SQUARES APPROXIMATION

In the preceding section we gave a near-minimax polynomial approximation based on
using polynomial interpolation at suitably chosen node points. Another approach is to
seek an approximation with a small “average error” over the interval of approximation. If
afunction f(x) is being approximated by a polynomial p(x) over anintervala < x < b,
then a convenient definition of the average error of the approximation is given by

1 b :
E(p; f’E\/mf [f(x) = p(x))*dx (4.106,

This is also called the root-mean-square-error in the approximation of f (x) by p(x). We
begin by illustrating its use in a relatively straightforward case. Note first that minimizing

E(p; f) for different choices of p(x) is equivalent to minimizing

b
[e - pera 4.107

Example 4.7.1

4.7 LEAST SQUARES APPROXIMATION ' 179

thus dispensing with the square root and multiplying fraction (although the minimums
are generally different).

Let f(x) = ¢, and let p(x) = ag + oty x, with g, o arbitrary. We want to approximate
S (x) over the interval [—1, 1]. Thus, we want to choose o, o] s0 as to minimize the
integral

1
g(o, 1) = f [e* —ap — ayx]*dx (4.108)
-1

Expanding this, we obtain
1
glag, ay) = / [+af + alx? — 20pe* — 20;x6" + 20001 x } dx (4.109)
-1

This can be integrated to give an expression of the form
glap, 1) = clozg + czaf + c3opag + c40p + sy + ¢

with suitable constants {cy, ..., ¢} calculated using integration. This is a quadratic
polynomial in the two variables o, oz;. Its minimum can be found by solving the
simultaneous equations

%8 _o 98 _, (4.110)
3051 .

30!0

in which we are using the derivatives of g with respect to ¢y and «;. In our case, it is
simpler to return to (4.108) to differentiate, obtaining

.
2/ [¢f —ag—a1x] (=1)dx =0
-1 -
1
2/ [—ap—a1x](—x) dx =0
-1

This simplifies to

1
209 = / edx =e—e!
-1

1
-32-o:1 = f x€dx = 2e7!
-1

-1
a =< ze =1.1752

ap =3¢ =1.1036

t 180 Chapter 4 INTERPOLATION AND APPROXIMATION
[
|

> X

-1 1

Figure 4.18. 'The linear least squares approximation to ¢*

Table 4.9. Errors in Linear Approximations of ¢*

Approximation Maximum Error Root-Mean-Square-Error
Taylor #; (x) 0.718 0.246
Least squares £ (x) 0.439 ’ 0.162
Chebyshev ¢ (x) 0.372 0.184
Minimax mj (x) 0.279 0.190

Using these values for ag and o1, we denote the resulting linear approximation by

£i(x) =g + ayx

Itis called the best linear approximation to ¢* in the sense of least squares. For the error,

max_|e* — £;(x)| = 0.439

—1=<x<1

‘ A graph of it is given in Figure 4.18. We compare four forms of linear approximation to
;,k;ilf ¢* which have been studied in this chapter, giving the maximum errors and root-mean-
ionn, square-errors for each in Table 4.9. &

Return to the minimization of E(p; f) in (4.106) for a general function f(x) on a
general interval [a, b], and let n > 0 be a given integer. We seek a polynomial p(x) of a
degree less than or equal to 7, that minimizes (4.107). Imitating the preceding example,

4.7 LEAST SQUARES APPROXIMATION 181

we can write
px) =ap+oax + - +opx” 4.111)
We define
1 .
glag, a1, ...y 0p) = f [fx) —ao—ayx — -+ — 02" dx (4.112)
-1
and we seek coefficients ap, 1, ..., o, that minimize this integral. If the integral is
expanded, it can be shown that g(wg, o1, . . ., &,) is a quadratic polynomial in the + 1
variables ag, ay, ..., o.
A minimizer for g(wg, o1, . . ., &) can be found by invoking the conditions
a
22 _0, i=0,1,....,n
aoz,-
leading toasetofn 4 1 equations that must be satisfied by a minimizing setog, o, .. ., &,

for g. Manipulating this set of conditions leads to a simultaneous linear system. To better
understand the form of the linear system, consider the special case of [a, b] = [0, 1].
Then the linear system is

n

, T
Z#:fo X fx)dx, i=0,1,....n (4.113)
j=0

We will study the solution of simultaneous linear systems in Chapter 6. In Section 6.5
we will see that this linear system is “ill-conditioned” and difficult to solve accurately,
even for moderately sized values of n such as n = 5. As a consequence, this is not a
good approach to solving for a minimizer of E(p; f) in (4.107).

4.7.1 Legendre Polynomials .

A better approach to minimizing E(p; f) requires the introduction of a special set of
polynomials, the Legendre polynomials. They are defined as follows:

Py(x) =1
1 an) " “4.114)
Py = — - [(=1)"], n=12,...
For example,
Pi(x)=x
Py(x) = 3 (3x2 = 1)
P3(x) = § (5x3 — 3x) (4-115)
Py(x) = § (35x* — 30x% + 3)

h 1
ﬁ‘
i

IRy

1

182

Chapter 4 INTERPOLATION AND APPROXIMATION

Figure 4.19. Legendre polynomials of degrees 1,2, 3,4

Graphs of these are given in Figure 4.19. As we will see later, when a polynomial is
expressed in terms of the Legendre polynomials, in contrast to the formula (4.111), the
coefficients of the expression for the least squares approximation are directly determined.

The Legendre polynomials have many special properties, and they are widely used
in numerical analysis and applied mathematics. We give some properties, but refer to
Atkinson (1989, Chap. 4) for proofs. We first introduce the special notation

b
(fg) = f F)g() dx @.116)

for general functions f(x) and g(x).
Properties:

e Degree and normalization:

deg P, = n, P =1, n>0

Triple recursion relation:

2n+1 : n
Pry1(x) = n+1xpn(-x)"'n+1pn—-1(x)v n>1 (4.117)
e Orthogonality and size:
0, i#]
(P, Pj) = 2 . (4.118)

4.7 LEAST SQUARES APPROXIMATION 183

e Zeros:

All zeros of P,(x) are located in the interval — 1 <x < 1,

and moreover, all zeros are simple roots of P, (x). (4.119)
e Basis: Every polynomial p(x) of degree < n can be written in the form
" :
p(x) =) _ BiP;i(x) 4.120)
=

with the choice of B, B1, . . . , B uniquely determined from p(x).

4.7.2. Solving for the Least Squares Approximation

We will solve the least squares approximation problem on only the interval [—1, 1].
Approximation problems on other intervals [a, b] can be accomplished using a linear
change of variable, as is discussed in Problem 4 of Section 4.6. Note that by using the

definition in (4.116), the quantity in (4.107) that we are seeking to minimize can be
written as

(f-p.f—Dp (4.121)

We begin by writing p(x) in the form of (4.120). We substitute this into (4.121), obtaining

gBo B B)=(f—p, f—p)= (f—ZﬂjPﬁf"Z,BiPi)
j=0 i=0

Using the property (4.118), we can expand this into the following:

- S APy [upq
= - (P, P))
=0 gﬁwm+z 5 P)) | B~ oy

Looking at this carefully, we see that it is smallest when

(P, Py’

Bi = =0,1,...,n (4.122)

and then the minimum for this choice of coefficients is

~ — (f, P;)’
=, f)—
g=(f Zh”ﬂ)

184 Chapter 4 INTERPOLATION AND APPROXIMATION

We call

£,(x) = P;(x) 4.123
* JZ:% (P;, P’ *)

the least squares approximation of degree n to f(x) on [—1, 1].

Example 4.7.2 We continue the preceding Example 4.7.1 in which f(x) =" on [—1,1]. We use
(4.123) with n = 3. The coefficients {o. 1, B2. B3} are given in Table 4.10.
When combined with the formulas given in (4.115), we obtain
£3(x) = 0.996294 + 0.997955x + 0.536722x% + 0.176139x°

The graph of €* — £3(x) is shown in Figure 4.20, and one can see that

max _|e* — £3(x)| = 0.0112

~1=x<1

Table 4.10. Coefficients g; for Cubic Least Squares Approximation to e

Jj 0 1 2 3
Bj 1.17520 1.10364 0.35781 0.07046

¥y
A
0.0112 |

L b x

i -1 1

-0.00460 |-

Figure 4.20. The error in the cubic least squares approximation to ¢*

PROBLEMS

4.7 LEAST SQUARES APPROXIMATION 185 ‘

Table 4.11. Errors in Cubic Approximations of ¢*

Approximation Maximum Error Root-Mean-Square-Error
Taylor £3(x) 0.0516 0.0145

Least squares £3(x) 0.0112 0.00334
Chebyshev ¢3(x) 0.00666 0.00384

Minimax mj3(x) 0.00553 0.00388

We compare four forms of cubic approximation to ¢* that have been studied in this chap-
ter, giving the maximum errors and root-mean-square-errors for each in Table 4.11.

4.7.3 Generalizations of Least Squares Approximation

For various reasons, we generalize the concept of “average error” by considering

1 b b
E(p; f)E\/;/ w(x) [f(x) — p(x)]* dx, c:/ w(x) dx (4.124)

and we seek to minimize this quantity. This is called weighted least Squares approxima-
tion, with w(x) called the weight function. The function w(x) is assumed to satisfy the
following assumptions:

Al. w(x) >0fora <x < b;
A2. For all integers n > 0,

b
/ w(x) |x["dx < o0

-

With these assumptions, we can quickly generalize the development given above that
used Legendre polynomials, provided we generalize the notation (4.116) to

b
(. 8y = f w(x) £ ()g(x) dx 4.125)

a

There are generalizations of the Legendre polynomials that satisfy the crucial orthog-
onality property (4.118), and we give some examples in Problems 8 and 9. There is a
general theory for such orthogonal polynomials; for an introduction, see Atkinson (1989,
Chapter 4). ‘

1. Find the linear least squares approximation to f(x) = €* on the interval [0, 1].
Use the direct method of Example 4.7.1, but on the interval [0, 1].

186 Chapter 4 INTERPOLATION AND APPROXIMATION

2. Find the linear least squares approximation to f(x) = sin x on the interval [0, %n].
Use the direct method of Example 4.7.1, but on the interval [0, Lx].

3. For the following functidns on [—1, 1], find their least squares approximations of :
degree n < 4, written in the form (4.123). The coefficients (f, P;) can be found by
either numerical integration (see Chapter 5) or by using a symbolic integrator such
as MAPLE or MATHEMATICA. Also graph the errors f (x) = £,(x)on [—1, 1].
(@) f(x) =sin(mwx);

| () f(x)=1log(l+x%);
| © f@)=tan'x;
@ f=ét=3@+1;

() f&x)=cos[ir@x+D].
Show (4.118) for 0 < i, j < 2.
Show (4.119) forn = 1,2, 3.

6. Show that foreachn > 0,

x" =Y cjnPix) (4.126)

j=0

for appropriate choices of coefficients {c;,»}. Begin by showing the casesofn =0 .
and n = 1, obtaining the needed coefficients {c;,}. For general n > 2, note that
you can solve for x" in the formula (4.114), obtaining a formula involving P, (x)
and {1, x, x2, ..., x""'}. Then show that a recursive algorithm can be devised to
obtain (4.126). For example, with n = 2, solve for x2 in terms of Py(x), 1, and |
+. Use the formula (4.126) for the cases of # = 0, 1 to show (4.126) forn =2. |
Repeat the process for n = 3, solving first for x? in terms of Ps3(x), 1, x, and x2.
Then use the formula (4.126) for the cases of n = 0, 1, 2 to show (4. 126) forn = 3.
Also, see the closely related Problem 9 of Section 4.5.

7. Using the results of Problem 6, show the basis property (4.120) for n = 2. Find
the coefficients {8;} in (4.120) from the coefficients {a;} of p(x) written in the
standard form :

" - px) =ap+ax + ax*

Also do the same procedure to obtain (4.120) for n = 3.

8. Letw(x) =1/+/1—x%for —1 <x < 1. Show that the Chebyshev polynomials
{T(x) : k = O} satisfy

Vi

(T;.T;), =0 for i#

What is (T, T;),, in this case?

4.7

10.

LEAST SQUARES APPROXIMATION 187

Recall the definition of Chebyshev polynomials of the second kind, S, (x), from

Problem 8, Section 4.5. Let w(x) = +/1 — x2 for —1 < x < 1. Show the orthog-
onality property

(Sij)w =0 for l;ﬁ_]

Repeat Problem 6, but do so with the Chebyshev polynomials of the second kind
{Sk (x)}»0 replacing the Legendre polynomials { P (x)} k=0-

i,

st
iy,
i

it

I i s

NUMERICAL INTEGRATION
AND DIFFERENTIATION

'.......0‘..l.'...ll...................QlQ.Q......Q..‘l........I......I.....O..

The definite integral

b
1) = f £) dx 5.0)

is defined in calculus as a limit of what are called Riemann sums. It is then proved that
I(f)=F() - F(a) (5-2)

where F(x) is any antiderivative of f(x); this is the Sfundamental theorem of calculus.
Many integrals can be evaluated by using this formula, and a significant portion of
most calculus textbooks is devoted to this approach. Nonetheless, most integrals cannot
be evaluated by using (5.2) because most integrands f(x) do not have antiderivatives ,

189

190

Chapter 5 NUMERICAL INTEGRATION AND DIFFERENTIATION

expressible in terms of elementary functions. Examples of such integrals are

1 T
/ e dx, / x™ sin (vx) dx (5.3)
0 0

Other methods are needed for evaluating such integrals.

In the first section of this chapter, we define two of the oldest and most popular
numerical methods for approximating (5.1): the trapezoidal rule and Simpson’s rule.
Section 5.2 analyzes the error in using these methods and then obtains improvements on
them. Section 5.3 gives another approach to numerical integration: Gaussian quadrature.
It is more complicated in its origins than the Simpson and trapezoidal rules, but it is
almost always much superior in accuracy for similar amounts of computation. The last

section discusses numerical differentiation. Some simple methods are derived, and their =

sensitivity to rounding errors is analyzed.

5.1. THE TRAPEZOIDAL AND SIMPSON RULES

Example 5.1.1

The central idea behind most formulas for approximating

b
1(f)=f Fx)dx

isto replétce f (x) by an approximating function whose integral can be evaluated. In this
section, we look at methods based on using both linear and quadratic interpolation.
Approximate f(x) by the linear polynomial

b—=x)f(@a)+ &x—a)f®)
b—a

Pi(x) =

which interpolates f(x) at a and b (see Figure 5.1). The integral of Py (x) over [, b] is
the area of the shaded trapezoid shown in Figure 5.1; it is given by

(5.4)

L) = & —a) [M]

This approximates the integral I (f) if f(x) is almost linear on [a, b].

Approximate the integral

1—/1 dx | (5.5)
—01—|—x ’

5.1 THE TRAPEZOIDAL AND SIMPSON RULES

a ’ b
Figure 5.1. An illustration of the trapezoidal rule (5.4}

The true value is I = log(2) = 0.693147. Using (5.4), we obtain

1 1 3
Ti==|14=|=-=0.
1 2[-!-2}) 0.75

This is in error by

I —T, = -0.0569

191

(5.6)

6.7

To improve on the approximation 7;(f) in (5.4) when f(x) is not a nearly linear
function on [a, b], break the interval [a, b] into smaller subintervals and apply (5.4) on
each subinterval. If the subintervals are small enough, then f(x) will be nearly linear

on each one. This idea is illustrated in Figure 5.2.

Figure 5.2. An illustration of T3(f)

192 Chapter 5 NUMERICAL INTEGRATION AND DIFFERENTIATION

Example 5.1.2 Evaluate the preceding example by using 7' (f) on two subintervals of equal length. For

two subintervals,
12 gx U dx
I= + /
,/0' 14+x 1/2 1+4+x

p2lflHs) 13+
21 2 2| 2

17 '
T, = — =0.708 5.
2= 5 33 (.8)

I -T,=-0.0152 5.9

The error in T is about % of that given for 77 in (5.7).
We will derive a general formula to simplify the calculations when using several
subintervals of equal length. Let the number of subintervals be denoted by n, and let

b—a

n

h=
be the length of each subinterval. The endpoints of the subintervals are given by
x;j=a+ jh, j=0,1,...,n
Then break the integral into » subintegrals
b X
1= [fwds= / fx)dx

. . . (5.10)
=f f(x)dx+/ f(x)dx+-~+/ FG)dx

n

Approximate each subintegral by using (5.4), noting that each subinterval [x;_1, x;] has
length A. Then

1w [LEE SO0 S0 1]

The terms on the right can be combined to give the simpler formula

To(f) =h[2f(x0) + FOx1) + f(x2) + -+ fnm1) + £ F ()] (5.11)

Example 5.1.3

5.1 THE TRAPEZOIDAL AND SIMPSON RULES 193

This is called the trapezoidal numerical integration rule. The subscript n gives the
number of subintervals being used; and the points xg, X1, . . ., x, are called the numerical
integration node points.

Before giving some numerical examples of 7,(f), we would like to discuss the
choice of n. With a sequence of increasing values of n, T,(f) will usually be an
increasingly accurate approximation of I (f). But which sequence of values of n should
be used? If n is doubled repeatedly, then the function values used in each Ty, (f) will
include all of the earlier function values used in the preceding T, (). Thus, the doubling
of n will ensure that all previously computed information is used in the new calculation,
making the trapezoidal rule less expensive than it would be otherwise. To illustrate how
function values are reused when » is doubled, consider 75 (f) and T4 (f).

L) = h [f 2 1 fan+ L (;2)] (5.12)
with
b— b
h= za, X = a, x1=a;— , X, =0b
Also,
To(f) = h [f (;“") b + O + Fx) + L (;“)} (5.13)
with
h_b——a _ _3a+b __a—i—b
— 4) Xo = da, Xy = 4 » Xy = 2 3
3b
X3 = a—{‘—t , x4=b

In (5.13), only f(x;) and f(x3) need to be evaluated, as the other function values are
known from (5.12). For this and other reasons, all of our examples of T,(f) are based
on doubling n.

We give calculations of T,,(f) for three integrals:

1

IO = / e dx = 0.746824132812427 (5.14)
0 v
4 dx

1 = / = tan"}(4) = 1.32581766366803 (5.15)
0 1 -+ x2

10— / T A 2% 5 eorsog7asdesad (5.16)

“Jo 24cosx) T 3 T ’

194 Chapter 5 NUMERICAL INTEGRATION AND DIFFERENTIATION

Table 5.1. Examples of the Trapezoidal Rule

n Im 7@ ®
Error Ratio Error Ratio Error Ratio
1.55E-2 —1.33E -1 —5.61E~1

; 4 3.84E -3 4.02 —3.59E -3 37.0 —3.76E - 2 14.9
i 8 9.59E — 4 4.01 5.64E — 4 -6.37 —1.93E -4 ©195.0
16 2.40E -4 4.00 1.44E — 4 3.92 -5.19E-9 37,600.0
i 32 5.99E -5 4.00 3.60E — 5 4.00 %
i 64 1.50E -5 4.00 9.01E—-6 4.00 *

128 3.74E - 6 4.00 225E—-6 4.00 *

The results are shown in Table 5.1. Only the errors I (f) — T,,(f) are given, since this
is the main quantity of interest in considering the speed with which T, (f) approaches
I(f). The column labeled “Ratio” gives the ratio of successive errors, the factor by
which the error decreases when 7 is doubled.

From the table, the error in calculating /") and I® decreases by a factor of about
4 when n is doubled. The third example, of I, converges much more rapidly. The
answers for n = 32, 64, and 128 were correct up to the limits due to rounding error on the
computer (about 16 decimal digits), and this is denoted by # in the table. An explanation
of all of these results will be given in the next section.

MATLAB PROGRAM. We give a program for the trapezoidal rule. We calculate T,,(f)
for n = nog, 2ny, 4ny, . .., 256ny, with ng supplied by the user. When # is doubled to -
2n, all of the function values occurring in T, () are also used in computing T3, (f). We :
also allow for a variety of integrands in the function f(x), with the user specifying the
!j integrand through the subprogram f. The program comments explain the organization
of the program.

function [integral,difference,ratio]=trapezoidal(a,b,n0,index_f)

% This uses the trapezoidal rule with n subdivisions to

ﬁl % integrate the function f over the interval [a,b]. The

1 % values of n used are

% n =n0,2%n0,4*n0,...,256%n0

i % The value of n0 must be a positive integer.

‘ % The corresponding numerical integrals are returned in the
% vector integral. The differences of successive numerical
% integrals are returned in the vector difference:

! % difference(i) = integral(i)-integral(i-1), i=2,...,9

% The entries in ratio give the rate of decrease in these

% differences.

5.1 THE TRAPEZOIDAL AND SIMPSON RULES

%

% In using this program, define the integrand using the

% function given below. The parameter index_f allows the
% user to do calculations with multiple integrands.

% Initialize output vectors.
integral = zeros(9,1);
difference = zeros(9,1);
ratio = zeros(9,1);

% Initialize for trapezoidal rule.
sumend = (f(a,index_f) +f(b,index_£f))/2;
sum = Q;

% Initialize for case of n0 > 2.
if(n0 > 2)
h = (b-a)/n0;
for i=2:2:n0-2
sum = sum + f(a+i*h,index_f);
end
end

% Calculate the numerical integrals, doing each
% by appropriately modifying the preceding case.
for i=1:9

n = n0*2"~(i-1);

h = (b-a)/mn;

for k=1:2:n-1

sum = sum + f(at+k¥h,index_f);

end

integral(i) = h*(sumend + sum);
end

% Calculate the differences of the successive
% trapezoidal rule integrals and the ratio

% of decrease in these differences.
difference(2:9) = integral(2:9)-integral(1:8);
ratio(3:9) = difference(2:8)./difference(3:9);

function f_value = f(x,index) .
%

% This defines the integrand.

switch index
case 1

195

196 Chapter 5 NUMERICAL INTEGRATION AND DIFFERENTIATION

f_value = exp(-x.72);

case 2

f_value = 1 ./(1+x.72);
case 3

f_value = 1 ./(2+cos(x));
end

5.1.1 Simpson’s Rule

To improve on T;(f) in (5.4), use quadratic interpolation to approximate f(x) on [a, b].
Let P, (x) be the quadratic polynomial that interpolates f(x) ata, ¢ = (@ + b)/2 and b.
Using this to approximate I (f), we get

[P _ ["TE—ox—b) (x —a)(x — b)
I(f)N/a Pz(x)dx—/a [mf(a)'i'm-(c_—b)f(c)

x—a)x—c

)
+ mf(b)] dx (5.17)

This integral can be evaluated directly, but it is easier to first introduce 2 = (b — a)/2
and then to change the variable of integration. We will evaluate the first term to illustrate
the general procedure. Let u = x — a. Then

S ' b (x —c)(x — b) 1

a+2h
] m x=ﬂ-2—fa (x—c)(x—b)dx

1 [
- —h -
02 (u Yu — 2h) du
1 [3, , T h
=—|— — =uh+2h ==
2h2[3 vt “]0 3
The complete evaluation of (5.17) yields
h a+b
$2(f) = 3 [f(a) +4f (T) + f(b):| (5.18)

The method is illustrated in Figure 5.3.

Example 5.1.4 Use the earlier integral from (5.5)

f‘ dx
I =
0 1+x

5.1 THE TRAPEZOIDAL AND SIMPSON RULES 197.

a (@a+b)/2 ' b

Figure 5.3. An illustration of Simpson’s rule (5.18)

Thenh = (b —a)/2 =1, and

1/2 2 1 25
=—11 — - = —=0. 1
Ss 3 [—!—4(3)4—2] %6 0.69444 (5.19)
The error is
I -5, =log(2) — S, = —0.00130 (5.20)

To compare this with the trapezoidal rule, use T, from (5.8), since the number of function
evaluations is the same for both Sz and T. The error in S, is smaller than that in 5.9
for T, by a factor of about 12, a significant increase in accuracy. ®

“

The rule S, (f) will be an accurate approximation to I (f) if f(x) is nearly quadratic
on [a, b]. For other cases, proceed in the same manner as for the trapezoidal rule. Let n
be an even integer, 1 = (b — a) /n, and define the evaluation points for f (x) by

X; =a+ jh, i=0,1,...,n 6.2

Follow the idea of (5.10), but break [a, b] = [x0, x,] into larger subintervals, each con-
taining three interpolation node points. Thus,

2

b Xn
1) = f F)ydx = f F@)dx
a Xo /

=/zf(x)dx+‘/X4f(x)dx+---+/n Ffx)dx

Xn—2

198 Chapter 5 NUMERICAL INTEGRATION AND DIFFERENTIATION

Table 5.2. Examples of the Simpson Rule

n I &) 1@ I®
Error Ratio Error Ratio Error Ratio

—3.56E — 4 8.66E — 2 —-1.26
-3.12E-5 114 3.95E -2 2.2 1.37E -1 . =92
8 —~1.99E —- 6 15.7 1.95E -3 20.3 1.23E-2 11.2
16 —1.25E—17 15.9 4.02E - 6 485.0 6.43E — 5 191.0
32 -7.79E -9 16.0 2.33E -8 172.0 1.71IE -9 37,600.0

64 -4 .87E — 10 16.0 1.46E -9 16.0 *

128 —3.04E — 11 16.0 9.15E — 11 16.0 *

Approximate each subintegral by (5.18). This yields

h h
I(f) = 3 Lf (ko) +4f (x1) + f(x2)] + 3 [f(x2) +4f(x3) + fFxa)]+- -
h
t3 Lf (%n—2) +4f (Xn-1) + f(x)]

If these terms are combined and simplified, we obtain the formula

h
Su(f) = 3 [f (x0) +4f (x1) +2f (x2) +4f (x3) +2f (xa) + - -

522)
+2f (in) +4f Gue) + FED] O
This is called Simpson’s rule, and it has been among the most popular numerical integra-
tion methods for more than two centuries. The index n gives the number of subdivisions
used in defining the integration node points x, .. ., X,.

Example 5.1.5 We evaluate the integrals (5.14) to (5.16), which were used previously to illustrate the
trapezoidal rule. The results of using Simpson’s rule are given in Table 5.2. For integrals
1D and I, the ratio by which the error decreases approaches 16. For integral I®, the
errors converge to zero much more rapidly. An explanation of these results is given in *.
the next section. = : ‘

o MATLAB PROGRAM. We give a program for Simpson’s rule. We calculate S, (f) for
n = ng, 2ng, 4no, . .., 256ng, with ng supplied by the user. When » is doubled to 27,
all of the function values occurring in S, (f) are also used in computing S,,(f). We
also allow for a variety of integrands in the function f(x), with the user specifying the
integrand through the subprogram f. The program comments explain the organization -
of the program. ’

5.1 THE TRAPEZOIDAL AND SIMPSON RULES 199

function [integral,difference,ratio]l=simpson(a,b,n0,index_f)

2 =

This uses Simpson’s rule with n subdivisions to integrate the
% function f over the interval [a,b]. The values of n used are
% n = n0,2%n0,4*n0,...,256%n0

% The value of n0 MUST be a positive even integer.

% The corresponding numerical integrals are returned in the

% vector integral. The differences of successive numerical

% integrals are returned in the vector difference:

% difference(i) = integral(i)-integral(i-1), i=2,...,9

% The entries in ratio give the rate of decrease in these

% differences.

% In using this program, define the integrand using the
% function given below. The parameter index_f allows the
% user to do calculations with multiple integrands.

% Initialize output vectors.
integral = zeros(9,1);
difference = zeros(9,1);
ratio = zeros(9,1);

% Initialize for Simpson integration.
sumend = f(a,index_f) + f(b,index_f);
sumodd = 0;

sumeven = 0;

% Initialize for case of n0 > 2.

if(n0 > 2)
h = (b-a)/n0;
for i=2:2:n0-2 -
sumeven = sumeven + f(a+i*h,index_f);
end
end

% Calculate the numerical integrals, doing each
% by appropriately modifying the preceding case.
for i=1:9

n = (n0)*(2°(i-1));

h = (b-a)/n; .

sumeven = sumeven + sumodd;

sumodd = 0Q;

for k=1:2:n-1

sumodd = sumodd + f(a+k+¥h,index_f);
end

200 Chapter 5 NUMERICAL INTEGRATION AND DIFFERENTIATION

integral(i) = hx(sumend + 4*sumodd + 2*sumeven)/3;
end

% Calculate the differences of the successive
% Simpson rule integrals and the ratio

% of decrease in these differences.
difference(2:9) = integral(2:9)-integral(1:8);
ratio(3:9) = difference(2:8)./difference(3:9);

function f_value = f(x,index)
%

% This defines the integrand.

switch index

case 1

f_value = exp(-x.72);
case 2
f_value
case 3
f_value
end

]

1 ./(14x.72);

1 ./(2+cos(x));

PROBLEMS 1. Compute T4(f) and S4(f) for the integral I in (5.5). Compute the errors [— T
and I — S4; compare them to the errors I — T, and I — S, respectively.

2. Using the program for the trapezoidal rule given in the text, prepare a table of
values of T,,(f) forn = 2,4, 8, ..., 512 for the following integrals. Also find the
errors and the ratios by which the errors decrease.

T . _ T 1
(a) /0 e’ cos(4x)dx = 7
1 |
(b) _/ xdx =2 |
0 ;
3 dx ~1 -1 :
(C) /(; m—:n—)z_tan (5—-7r)+tan (ﬂ')

b3
) / %) dx = 7.95492652101284
-7
; /4
b (e f €% dx = 1.93973485062365
: 0

1
® foﬁdx=§

3. Repeat Problem 2 using Simpson’s rule.

5.1

THE TRAPEZOIDAL AND SIMPSON RULES 201

Use the trapezoidal rule and Simpson’s rule withn = 4, 8, ..., 512 to find approx-
imate values of the area under the curve of y = £ (x) for the following functions
f(x) on the given intervals:

@ fx=e*, 0<x<10
®) fx)=tan™' (1+x?), 0<x<2
(© fx)y=+xe*, 0<x=<1

Recall that the length of the curve represented by a function y = f(x) on an
interval [a, b] is given by the integral

1) = f T @P ax

_ Use the trapezoidal rule and Simpson’s rule with n = 4,8, ...,512 to compute

the lengths of the following curves:
@ f(x)=sin(zx), 0<x<1
b) f(x)=¢€, 0=<x<1

© f@=e’, 0=x<1

Experiment with computing numerically the integral

b4 24/3 b 3
I=/ —szi tan™! —\/E 2tan — + 1 _ﬁi
0o 2+sinx 3 3 2 9

for various intervals [0, b]. In particular, use b = %:‘r, 7, 2w, 10. Do so with both
the trapezoidal rule T,, and Simpson’s rule S,,, and use a number of values of n. This
integral can be evaluated analytically, although some caution is needed in using the
most common formulas; the above formula is accurate for only — %n’ <b< %n.
Comment on your numerical results, including the rate of convergence of the
numerical methods being used.

Calculate the last two integrals in (5.17), verifying (5.18).
(a) As another approximation to I (f) = f: f(x)dx, replace f(x) by the con-

stant f[(a + b)/2] on the entire interval a < x < b. Show that this leads to
the numerical integration formula

b
Mi(f)=(b—a)f (‘“2“)

Graphically illustrate this approximation.

202 Chapter 5 NUMERICAL INTEGRATION AND DIFFERENTIATION

(b) In analogy with the derivation of the trapezoidal rule (5.11) and Simpson’s
rule (5.22), generalize (a) to the numerical integration formula

M, (f) = h[f(x1) + f(x2) + -+ + f(xa)]

where 4 = (b — a)/n and

xj=a+(j-—-;-)h, j=1...,n |

This is called the midpoint rule; it is a popular alternative to the trapezoidal w
rule.

(¢) For the integral, I = fo1 dx /(1 + x) of (5.5), calculate M;(f) and M(f).
Compare the errors to those for 71 and T, given in (5.7) and (5.9).

9. Repeat Problem 2 using the midpoint rule.

10. (a) Asanotherapproximationto (f) = fa b f(x) dx,replace f(x) by the degree
4 polynomial P,(x) interpolating f(x) at the five points

xj=a+jh, j=0,1127374: h=

Show that this leads to the apprdximating formula

2h
By(f) = 15 [7f (xo) +32f (x1) + 12f (x2) + 32f (x3) + 7 f (x4)]

This is called Boole's rule, and it can be generalized to a larger number of ,
subintervals in the same manner as was done for the Simpson and trapezoidal v
rules.
(b) Compute B4(f) for I = fol dx /(1 + x), and compare the results to those
obtained in Problem 1. i

11. The degree of precision of a numerical integration formula is defined as follows: If
the formula has zero error when integrating any polynomial of degree < r, and if
the error is nonzero for some polynomial of degree r -+ 1, then we say the formula
has degree of precision equal to 7. Show that the following rules have the indicated
degree of precision r: "

@ M) r=1 (see Problem 8 for definition of M;(f))
) Ti(f):r=1
© S(f):r=3
d) Biu(f):r=5 _ (see Problem 10 for definition of B4(f))

uH:I’ﬂm

5.2

12.

13.

14.

15.

16.

ERROR FORMULAS 203

Are these results still valid when the various subscripts are replaced by n?

Hint: In your work, consider only I = fob f(x) dx, for suitable b, and f(x) =
1, x, x2, etc.

Determine the degree of precision of the approximation
[rwartrols (2
0 4 47 \3

Let

3h
L(f) =170 +372h]

What is the degree of precision of the approximation I, (f) ~ f03 g Fx)dx?
Hint: Consider f(x) = 1, x, x2, x3, etc.

Approximate I (f) = f_ll f(x)dx by replacing f(x) with P;(x), the linear inter-
polant to f(x) at x = -% and x = % Give the resulting numerical integration

formula. What is its degree of precision?

Consider the approximation

1
1) = [F@dxx £ P+ f(B)

for some B satisfying 0 < 8 < 1. Show it has degree of precision greater than or
equal to 1 for any such choice of 8. Choose 8 to obtain a formula with degree of
precision greater than 1. What is the degree of precision of this formula?

Approximate I(f) = fOZh f(x)dx by replacing f(x) with P;(x), the linear in-
terpolant to f(x) at x = 0 and x = h. Give the resulting numerical integration
formula. What is its degree of precision? :

5.2. ERROR FORMULAS

In the preceding section, numerical results for all integrands but one showed a regular
behavior in the error for both the trapezoidal and Simpson rules. To explain this regular
behavior, we consider error formulas for these integration methods. These formulas
will lead to a better understanding of the methods, showing both their weaknesses and

204 Chapter 5 NUMERICAL INTEGRATION AND DIFFERENTIATION

strengths, and they will allow improvements of the methods. We begin by examining
the error for the trapezoidal rule.

Theorem 5.2.1 Let f(x) have two continuous derivatives on [a, b], and let n be a positive integer. Then
for the error in integrating

b
1) = f £ dx

using the trapezoidal rule T,(f) of (5.11), we have

—h*(b —a

EN(H) = 1)~ Tf) = ——) (e (5.23)

The number c, is some unknown point in [a, b], and k& = (b —a)/n.

The proof is omitted here, although part of it is given later. The formula (5.23)
can be used to bound the error in T, (f), generally by bounding the term | bl (cn)l by
its largest possible value on the interval [a, b]. This will be illustrated in the following
! example. Also note that the formula for E ,{ (f) is consistent with the behavior of the

' errors observed in Table 5.1 for the integrals I and 1 @, When n is doubled, & is
i halved, and the term /% decreases by a factor of 4. This is exactly the factor observed in
: Table 5.1 for the decrease in the trapezoidal error.

Example 5.2.2 Recall the examples involving (5.5) in the preceding section, with

L dx
I = — =log(2
fo 1+x 0g(2)

Here f(x) =1/(1+x), [a,b] =[0,1], and f"(x) =2/(1 + x)3. Substituting into
(5.23), we obtain

h2
El(f)= —5f e, 0=asl h=- (5.24)

This formula cannot be computed exactly because c, is not known. But we can bound
the error by looking at the largest possible value for { f(cn) } Bound 1 7 x)] onla, b] =

[0, 11
j 2
lf""nq max —————— ==
; o<x=i (1 4+ x)3
Then
h? h?
T Ay
NEXN = 7@ =% (5.25)

5.2 ERROR FORMULAS 205
Forn =1and n = 2, we have

2
|ET ()] < -é— =0.167, |E](f)| < E%z)— = 0.0417

Comparing these results with the true errors given in (5.7) and (5.9), we see that these
bounds are two to three times the actual errors. m

A possible weakness in the trapezoidal rule can be inferred from the assumptions
of Theorem 5.2.1. If f(x) does not have two continuous derivatives on [a, b], then does
T, (f) converge more slowly? The answer is yes for some functions, especially if the
first derivative is not continuous. This is explored experimentally in Problem 14.

5.2.1 An Asymptotic Estimate of the Trapezoidal Error

The error formula (5.23) can only be used to bound the error, because " (cy) is unknown.
This will be improved on by a more careful consideration of the error formula.

A central element of our proof of (5.23) lies in being able to demonstrate the n = 1
case for an interval [, o + A]:

a+h h h3
/ f(xydx —h [fﬁ)_:’“_zfi(_"‘j_)] = -5/ (5.26)

for some c in [«, a + &]. A short proof of this can be based on the error formula 4.53)
for linear interpolation; and another approach that makes use of Taylor polynomial
approximations is taken up in Problem 11. Here, we show only how to use (5.26) to
obtain the general formula (5.23) in Theorem 5.2.1.

Recall the derivation of the trapezoidal rule 7}, (f) as given in and following (5.10)
in Section 5.1. Then

b Xy ’
ET(f) = / F@)dx —T,(f) = / £ dx = T(f)

‘ =f"‘ f(x)a’x——h[f(XO);f(xl)]+/xzf(x)dx—-h[f(xl);f(m)]

. +f " fydx—h [————-—._f(x"“l); f(x”)}
Xn—1
(5.27)
Apply (5.26) to each of the terms on the right side of (5.27), to obtain
3 h® e
T — £V e A -4
E,(f)= 12f () 7) 7) (5.28)

The unknown constants y;, . .., ¥n are located in the respective subintervals

[XO,X].], [XI,)CZ], cecs [xn—la xn] (529)

206

1
Example 5.2.3 Again consider the case I = /
0

Chapter 5 NUMERICAL INTEGRATION AND DIFFERENTIATION

By factoring (5.28), we obtain

n? ‘
Ej(f)= ~E[hf"(y1) A+ R (va)] (5.30)

It is left to Problem 12 to show that the quantity in brackets equals (b — a) f"(c,) for l
some c, in [a, b], thus obtaining the general case of (5.23).

To estimate the trapezoidal error, observe that the term in brackets in (5.30)is a
Riemann sum for the integral

b |
] £y dx = £6) - f'(@) (5.31)

The Riemann sum is based on the partition (5.29) of [a, b]; as n — oo, this sum will
approach the integral (5.31). Using (5.31) to estimate the right side of (5.30), we find
that

- fl@] (5.32)

r ~__2

This error estimate will be denoted by E T(f). Itis called an asymptotic estimate of the
error because it improves as n increases. As long as f’(x) is computable, E T() will
be very easy to compute.

d
- _:x. Then f(x) = —1/(1 + x)?, and (5.32) yields
the estimate
R -1 ~1 —n?
ET _ = —, h=-— 33
()= [(1+1)° (1+0)2] 16 (5:33)

Forn=1andn =2,
~r 1 ~r .
E{ (f) = BT = -0.0625, E; (f) = —0.0156

These compare quite closely to the true errors given in (5.7) and (5.9).

The estimate Z, T (f) has several practical advantages over the earlier error formula
(5.23). First, it confirms that when » is doubled (or 4 is halved), the error decreases by
a factor of about 4, provided that f'(b) — f'(a) # 0. This agrees with the results for
IM and I® in Table 5.1. Second, (5.32) implies that the convergence of T, (f) will
be more rapid when f’(b) — f’(a) = 0. This is a partial explanation of the very rapid
convergence observed with / ®) in Table 5.1; a further discussion is given at the end of

Example 5.2.4

5.2 ERROR FORMULAS 207

Table 5.3. Example of CT,,(f) and £,(f) .

n 1 =T.(f) E.(f) CT.(f) I =CT.(f) Ratio
2 1.545E — 2 1.533E -2 0.746698561877 1.26E — 4
4 3.840E ~ 3 3.832E-3 0.746816175313 7.96E — 6 158
8 9.585E — 4 9.580E — 4 0.746823634224 4.99E — 7 16.0
16 2.395E — 4 2395E—4 - 0.746824101633 3.12E-8 16.0
32 5.988E -5 5.988E — 5 0.746824130863 1.95E~9 16.0
64 1.497E - 5 L497E - 5 0.746824132690 2.22E-10 16.0

this section. Finally, (5.32) leads to a more accurate numerical integration formula by
taking ET (f) into account:

—h2
1(f) = T.(f) ~ —-1—2~[f'(b) - f(@)]
h2
I(f)=T,(f) - E[f’(b) - fl@1l (5.34)

This is called the corrected trapezoidal rule, and it will be denoted by CT;,(f).
Recall the integral " used in Table 5.1,

1 .
I= / e dx = 0.74682413281243
0

In Table 5.3, we give the results of using 7,,(f) and C7,(f), including their errors and
the estimate

"

~ h2e~1 1
E="t-, #=1
n

Note that E T(f)isa very accurate estimator of the true error. Also, the error in C T.(H
converges to zero at a more rapid rate than does the error for 7, (f). When # is doubled,
the error in CT,,(f) decreases by a factor of about 16.

*

5.2.2 Error Formulas for Simpson’s Rule

The type of analysis used in the preceding discussion can also be used to derive corre-
sponding error formulas for Simpson’s rule. These are stated in the following theorem,
with the proof omitted.

i

.
hy

208

Theorem 5.2.5

Example 5.2.6

Chapter 5 NUMERICAL INTEGRATION AND DIFFERENTIATION

Assume f(x) has four continuous derivatives on [a, b], and let n be an even positive
integer. Then the error in using Simpson’s rule is given by

B4 — a)

S ROIO)
T (535

ES(f)=1(f) = S(f) =~
with ¢, an unknown point in [a, b] and & = (b — a)/n. Moreover, this error can be
estimated with the asymptotic error formula ’

h4

o
B =-15

[F"®) = " @] (5.36)

Note that (5.35) says that Simpson’s rule is exact for all f(x) that are polynomials
of degree < 3, whereas the quadratic interpolation on which Simpson’s rule is based is
exact only for f(x) a polynomial of degree < 2. The degree of precision being 3 leads
to the power 4* in the error, rather than the power h3, which would have been produced
on the basis of the error in quadratic interpolation. It is this higher power of h* in the
error and the simple form of the method that historically have caused Simpson’s rule to
be the most popular numerical integration rule.

1
d
Recall (5.19) where S;(f) was applied to [= f T—l% Then
0

1 -6 24
f@=1 PW=gar M= T
The exact error is given by
K 1
ES = - @ nls h=-
2 () 180f (cn) -
for some 0 < ¢, < 1. We can bound it by
h* 2h*
ES(H)] < —@24) = —
EXN] = 15529 = T3

The asymptotic error is given by

~ n* —6 -6 ht
S e — P
E.(f)= wo[a+&y a+0y]_ 32

For n =2, ES (f) = —0.00195; for comparison from (5.20), the actual error is
—0.00130. =

The behavior in I (f) — S, (f) can be derived from (5.36). When 7 is doubled, 7 is

halved, and #* decreases by a factor of 16. Thus, the error E3 (f) should decrease by the

Bidaiiie

Example 5.2.7

5.2 ERROR FORMULAS 209

same factor, provided that f/(b) # f"(a). This is the error behavior observed in Table

5.2 with integrals I and I®. When f"(b) = f"(a), the error will decrease more

rapidly, which is a partial explanation of the rapid convergence for I® in Table 5.2.
The theory of asymptotic error formulas

E (f) ~ Ea(f) (5.37)

such as for EﬂT (f) and E;f (f), says that (5.37) is valid, provided that

E.(f) _
n00 Ey(f)

1

The needed size of n in (5.37) will vary with the integrand f, which is illustrated with
the two cases I and I® in Table 5.2. For I®, the behavior (5.37) is not valid until
becomes larger, n > 64.

From (5.35) and (5.36), we also are led to infer that Simpson’s rule will not perform
as well if f(x) is not four times continuously differentiable on {a, b]. This is correct for
most such functions, and other numerical methods are often necessary for integrating
them.

Use Simpson’s rule to approximate

1
szo Vxdx =}

The results are shown in Table 5.4. The column “Ratio” shows the convergence is much
slower. =

As was done for the trapezoidal rule, a corrected Simpson’s rule can be defined:

»

h4
CSu(f) = Su(f) — T@[f/,,(b) - @] (5.383)

This will usually be a more accurate approximation than S, (f).

Table 5.4. Simpson’s Rule for /x

n Error‘ Ratio
2 2.860E — 2
4 1.014E -2 2.82
8 3.587E~3 2.83
16 1.268E — 3 2.83

32 4.485E -4 2.83

210 Chapter 5 NUMERICAL INTEGRATION AND DIFFERENTIATION

5.2.3 Richardson Extrapolation

The error estimates (5.32) and (5.36) are both of the form
c ‘
I1-1,= T (5.39)

where I, denotes the numerical integral and 4 has been replaced by (b —a)/n. The .

constants ¢ and p vary with the method and the function. With most integrands f(x),

p = 2 for the trapezoidal rule and p = 4 for Simpson’s rule. There are other numerical

methods that satisfy (5.39), with other values of p and c. We will use (5.39) to obtaina

computable estimate of the error I — I, without needing to know c explicitly. '
In (5.39), replace n by 2n to obtain

[= Iy~ 2;? (5.40)
Comparing this to (5.39), we see that
I A 4
ne
Solving for I gives us
27 - 1)I=2PL, ~1I,
I 5Pl — 1) = Ry (5.41)

R5, is an improved estimate of 7, based on using I,, I, p, and the assumption (5.39). .
It is called Richardson’s extrapolation formula, and generally it is a more accurate
approximation to ! than is I,,. How much more accurate it is depends on the validity
of (5.39), (5.40).

To estimate the error in I, compare it with the more accurate value Ry,.

1
I— D, =~ Ry, — b, = 27___{[2'”1% - I,] - Iy,

I“IZrzz

1 !
2% — l[]2n - In] (542) A

This is Richardson’s error estimate.

i
L

Example 5.2.8 In using the trapezoidal rule to approximate

1
I= f e dx = 0.74682413281243
0

5.2 ERROR FORMULAS 211

we have .
T, =0.7313702518, Ty = 0.7429840978
Using (5.41) with p = 2 and n = 2, we obtain
I ~ Ry = }[4l4 — L] = {[4T, — T»] = 0.7468553797

The error in R, is —0.0000312; and from Table 5.1, R, is more accurate than T3,. To
estimate the error in Ty, use (5.42) to get

I - Ty~ 1Ty — T5] = 0.00387

The actual error in Ty is 0.00384; and thus (5.42) is a very accurate error estimate.

Richardson’s extrapolation and error estimation is not always as accurate as this
example might suggest, but it is usually a fairly accurate procedure. The main assumption
that must be satisfied is (5.39); and Problem 13(b) gives a way of testing whether this
assumption is valid for the actual values of I, being used.

Most computer program libraries contain one or more programs for automatic
numerical integration. This means that the user of such a program presents an integral
to it along with a desired error tolerance. The program then attempts to find a numerical
integral within that error limit. There are many such programs, based on many different
numerical integration rules. But most of them use error estimation techniques related
to the ideas of Richardson’s extrapolation and estimation. We will not consider these
programs here, as they are very complex in structure; but they are often the best way
to integrate a function if there are not too many such integrals. These programs usually
have higher program overhead costs, in the form of extensive “bookkeeping” tasks for
various quantities used in the integration; but these costs are generally more than offset
by the programming time that these programs save the user.

5.2.4 Periodic Integrands
A function f(x) is periodic with period t if
fx)= fx+7), —00 < X < 00 (5.43)
and this relation should not be true with any smaller value of . For example,
f(x) = 5

is periodic with period T = 2. If f(x) is periodic and differentiable, then its derivatives
are also periodic with period 7.

212

Example 5.2.9

Chapter 5 NUMERICAL INTEGRATION AND DIFFERENTIATION

Consider integrating

b
I=/ fx)dx

with the trapezoidal or Simpson’s rule, and assume that b — a is an integer multiple of
the period r. Assume f(x) has derivatives of any order. Then for all derivatives of
f(x), the periodicity of f(x) implies that

fP@=r%®, k=0 (5.44)

If we now look at the asymptotic error formulas for the trapezoidal and Simpson’s rules,
they become zero because of (5.44). Thus, the error formulas EI () and E5(f) should
converge to zero more rapidly when f(x) is a periodic function, provided b — a is an
integer multiple of the period of f. ~

The asymptotic error formulas E! (f) and ES(f) can be extended to higher-order
terms in &, using what is called the Euler—-MacLaurin expansion and the higher-order
terms are multiples of f®(b) — f®(a) for all odd integers k > 1. Using this, we
can prove the errors EX (f) and EJ(f) converge to zero even more rapidly than was
implied by the earlier comments for f (x) periodic. This work is omitted; but note that the
trapezoidal rule is the preferred integration rule when we are dealing with smooth periodic
integrands. The earlier results for integral /® in Tables 5.1 and 5.2 are illustrations of
these comments. :

The ellipse with boundary

x\2 y)2
z ZY =1
(a) + (b
has area wab. For the case in which the area is w (and, thus, ab = 1), we study the
variation of the perimeter of the ellipse as a and b vary. Some of our results are presented
without a detailed discussion; and the reader is expected to fill in these details.
The ellipse has the parametric representation

(x,y) = (acosb, bsinb), 0<6<2n (5.45)

By using the standard formula for the perimeter, and using the symmetry of the ellipse
about the x-axis, we find that the perimeter is given by

=l (5) + ()

b4
=2'/ Va?sin?6 + b2 cos? 0 d
0

5.2 ERROR FORMULAS 213

Since ab = 1, we write this as

= 1
P(b) =2 — sin®6 + b2 cos? 9 do
o Vb2

(5.46)

2 T
= _f V(B* —1)cos26 + 1 do
b Jy
We consider only the case with 1 < b < co. Since the perimeters for the two ellipses
x\2 y 2 x\2 y 2
G +G) =1 = () +(G) -

are equal, we can always consider the case in which the y-axis of the ellipse is larger
than or equal to its x-axis; and this also shows

P (%) =P®), b>0 (5.47)

The integrand of P (b)

SN

FO) = Z[* = 1)cos?o + 1]

is periodic with period 7. As discussed above, the trapezoidal rule is the natural choice
for numerical integration of (5.46). Nonetheless, there is a variation in the behavior of
f(0) as b varies, and this will affect the accuracy of the numerical integration. In Figure
5.4, we give graphs of f(0) for several values of . In Table 5.5, we give the results
of using the trapezoidal rule for these values of b, for increasing values of n. Note that
as b increases, the trapezoidal rule converges more slowly. This is due to the integrand
f(0) changing more rapidly as b increases. Forlarge b, f(8) changes very rapidly in the

“

4 <= bh=2
O« ph=5
- bh=8
20
5
10 *
L > 0
T T

2
Figure 5.4. The graph of integrand f9): 5 =2,5,8

214 Chapter 5 NUMERICAL INTEGRATION AND DIFFERENTIATION

Table 5.5. Trapezoidal Rule Approximations of {5.46)

n b=2 b=5 b=38
8 8.575517 19.918814 31.690628
16 8.578405 20.044483 31.953632
32 8.578422 20.063957 32.008934
64 8.578422 20.065672 32.018564
128 8.578422 20.065716 32.019660
256 8.578422 20.065717 32.019709
z
A
40 H

Figure 5.5. 'The graph of perimeter function P(b) for ellipse

vicinity of 6 = %n; and this causes the trapezoidal rule to be less accurate than when b
is smaller, near 1. To obtain a certain accuracy in the perimeter P (b), we must increase
n as b increases.

The graph of P (), given in Figure 5.5, reveals that P (b) =~ 4b for large b. Return-
ing to (5.46), we have for large b, ‘

2 2
P(b) ~ —/ [6* cos?6]"/* do
b Jo
2, "
=20 | |cos6] db = 4b
b Jo

We need to estimate the error in the above approximation to know when we can use it
to replace P(b); but it provides a way to avoid the integration of (5.46) for the most

PROBLEMS

5.2 ERROR FORMULAS 215

‘badly behaved cases. The reader should give a geometric argument to explain the
reasonableness of this result. =

1. Using the error formula (5.23), bound the error in 7, (f) applied to the following
integrals:

/2
(a) f cos(x)dx
0
1 2
(b) / e dx
0
JT
(c) f cos(x?) dx
0
2. Repeat Problem 1 by using the integrals (a), (b), and (c) of Problem 2 in Section

5.1. Compare your bounds to the actual errors.

3. Apply the trapezoidal error estimate (5.32) to the integrals (a), (b), (c), and (&) of
Problem 2 in Section 5.1. Compare the results with the actual errors.

4. Repeat Problem 3 by using the integral 7® of Table 5.1 in Section 5.1.

5. Using the asymptotic error formula (5.32) for the trapezoidal rule, estimate the
number 7 of subdivisions to evaluate the following integrals to the given accu-
racy €:

3
(a) flog(x)dx, e=10"%
1

() f
0

2
2 2
(© /e"" dx, €=10"1
0

-

4 dx
d — = 10712
@ fo S

e —e*
2

dx, € =10"10

6. Repeat Problem 5, but use Simpson’s rule and its asymptotic error estimate (5.36).

7. (a) Consider using the trapezoidal rule 7, to estimate the integral

3
1 =/ logx dx
: 1 g

Give both a rigorous error bound for I — 7}, and an asymptotic error estimate
I — T,. Using the rigorous error bound, determine how large n should be in
order that | — T,,| <5 x 1078,

(b) Repeat with Simpson’s rule.

216

8.

10.

11.

12.

‘Chapter 5 NUMERICAL INTEGRATION AND DIFFERENTIATION

Repeat Problem 7 with

1=f1 dx
124+x

Repeat Problem 7 with

1 x —X
e +e
I = d

f—l 2 ¥

The error E, (f) for both the trapezoidal and Simpson rules has some useful prop-
erties that simplify its calculation.

(@) Show that E,(f + g) = E,(f) + E,(g), for all continuous functions f(x)
and g(x).

(b) Show that E,(cf) = cE,(f), for all continuous functions f(x) and con-~
stants c.

(¢) If p(x)isalinear polynomial, whatis E ,,T (p)? If p(x) is a cubic polynomial,
what is ES(p)?

(d) Foratwice continuously differentiable function f(x) on [, b], use the linear
Taylor polynomial

)= f@+ & -a)f'(a)
to write f(x) = p1(x) + Ri(x), with R;(x) the error in p;(x). Show that
Ey (f) = E; (R))
This can sometimes be used to simplify the calculation of ET (f).

The proof of the basic trapezoidal error formula (5.26) is based on using Taylor’s
formula to expand f(x) about &. To give a heuristic proof of (5.26), write

A2
F@ = f@) + - @+ S

Substitute this into the left side of (5.26) and obtain something quite close to its
right side. Problem 10(d) can be used to simplify these calculations.

Recall the formula (5.30), an intermediate step in obtaining the error formula (5.23)
for ET(f). To complete the proof, apply the ideas embodied in formula (A.1) and
Problem 9 of Appendix A, with f”(x) playing the role of f(x) in those statements.

Hint: Write the term in brackets in (5.30) as

')+)+ + f”(n)]

n

b - a)‘[

5.2 ERROR FORMULAS 217

13.

14.

15.

(a) From (5.39) derive .

I-L .,
I_IZn

for all n for which (5.39) is valid.
Hint: Consider (5.39) and (5.40).
(b) From (5.39), derive the computable estimate

12n - In

~ 2P
I4n - IZn

This gives a practical means of checking the value of p, using three succes-
sive values I, I, and Is,. Using the log function, we get

12n - In

=lo
P g (14;1 - IZn

)/10g2

Hint: Write b, — I, = (I — I,) — (I — L), and do the same for the de-
nominator. Then apply (5.39).

(a) Use the formula in Problem 13(a) with the results in Table 5.4 to identify
1
the appropriate p in (5.39) for Simpson’s rule applied to / Vxdx.
- Jo

1
(b) Apply T,(f) to / Jxdx forn=2,4,8,...,128. Compute the value of
0
p in (5.39) for these numerical integrals. Use Problem 13(a) or (b).

Following is a table of values of the trapezoidal rule applied to the integral

"

1
I= / tan~' xdx = }m — }1n2 = 0.43882457311748
A ;

Using the table, produce the Richardson’s error estimate for T}, forn = 16, 32, 64.
In addition, produce the corrected trapezoidal rule for n = 64. Using the true an-
swer, given above, what is the error in your value for the corrected trapezoidal rule?

n T,

4 0.4362066157
0.4381726803

16 0.4386617597

32 0.4387838797

64 0.4388144004

218

Chapter 5 NUMERICAL INTEGRATION AND DIFFERENTIATION

16. (a) Followingis atable of numerical integrals /, for an integral whose true value
is I = 0.3. Assuming that the error has an asymptotic formula of the form

I—1I,~

for some p > 0 and ¢, estimate the order of convergence p. Estlmate c.
Estimate the size of » in order to have |I — I,,| < 10~10,

n 1, n n I n

8 0.2993331765 64 0.2999791556
16 0.2997899139 128 0.2999934344
32 0.2999338239 256 0.2999979320

(b) Assuming / is not known (as is usually the case), estimate p.

17. Use Richardson’s extrapolation to estimate the errors in Problems 2(a), (b), (c),
and (e) of Section 5.1.

18. Use Richardson’s extrapolation to estimate the errors in Problems 3(a), (b), (¢),

and (e) of Section 5.1.

19. In the following table of numerical integrals and their differences, give the likely
value of p if we assume the error behaves like I — I, &~ c/nP. Also, estimate the
error in lg,.

Hint: Use Problem 13(b).

n I n I n 1 n/2
0.702877396
0.781978959 0.07910
0.804500932 0.02252
16 0.810303086 0.005802
32 0.811764354 0.001461
64 0.812130341 0.0003660

1 "";:
20. (a) ApplySimpson’sruleto/ = f sin(v/x) dx withn = 2,4, 8, ..., 128.Use

0
Problem 13(b) to calculate the rate of convergence.

(b) Transform I by using the change of variable x = 12, obtaining

1
1 =2f tsin(t) dt
0

5.3 GAUSSIAN NUMERICAL INTEGRATION 219

Apply Simpson’s rule to this new integral with n = 2,4, 8, ... 128, and
compare the results with those of (a).

1
21. (a) Apply Simpson’sruleto] = / sin(«/x)dx withn = 2,4, 8, ...,128.
0
By using Problem 13(b), calculate the rate of convergence.

(b) Following the ideas in 20(b), find a change of the variable of integration to
give a new integrand for which Simpson’s rule will have a higher order of
convergence.

b
22. Consider the numerical integration of I = / f(x)dx when the nodal values
a

S (x;) are known only approximately. More precisely, let f, ~ f(x),i=0,1,
..., n, and suppose

’f(x,-)—f“,-]ge, i=0,1,....n

Let I, and I, be the numerical integrals computed by using {f(x;)} and { ﬁ-},
respectively.
(a) Show that

I —I,| <e(b-a)

when I, is based on either the trapezoidal rule or Simpson’s rule.

(b) Generalize this result to any integration formula for which (i) all integration
weights are positive, and (ii) the formula has a degree of precision greater
than or equal to zero.

5.3. GAUSSIAN NUMERICAL INTEG]E“{ATION

The numerical methods studied in the first two sections were based on integrating linear
and quadratic interpolating polynomials, and the resulting formulas were applied on
subdivisions of ever smaller subintervals. In this section, we consider a numerical
method that is based on the exact integration of polynomials of increasing degree; no
subdivision of the integration interval is used. To motivate this approach, recall from
Section 4.4 of Chapter 4 the material on approximation of functions.

Let f(x) be continuous on [a, b]. Then p,(f) denotes the smallest error bound
that can be attained in approximating f(x) with a polynomial p(x) of degree < n on
the given interval @ < x < b. The polynomial m, (x) that yields this approximation is
called the minimax approximation of degree n for f(x),

max |f(x) —mn(x)| = pu(f) (5.48)

a<x<b

220

Example 5.3.1

Chapter 5 NUMERICAL INTEGRATION AND DIFFERENTIATION

Table 5.6. Minimax Errors fore™,0<x <1

n P (f) n Pu(f)

1 5.30E -2 6 7.82E -6

2 1.79E -2 7 4.62E -7
.3 6.63E — 4 8 9.64E — 8

4 4.63E -4 9 8.05E -9

5 1.62E -5 10 9.16E — 10

and p,(f) is called the minimax error. From formula (4.82), it can be seen that p,(f)
will often converge to zero quite rapidly.

Let f(x) = e~ for 0 < x < 1. Table 5.6 contains the minimax errors p,(f) for n =
1,2,...,10. They converge to zero rapidly, although not at a uniform rate. =

If we have a numerical integration formula to integrate low- to moderate-degree
polynomials exactly, then the hope is that the same formula will integrate other functions
f(x) almost exactly, if f(x) is well approximable by such polynomials. To illustrate
the derivation of such integration formulas, we restrict our attention to the integral

1
1) = / fG)ds (5.49)

Its relation to integrals over other intervals [a, b] will be discussed later.
The integration formula is to have the general form

n
L(f) =) w,f(x)) (5.50)
j=1
and we require that the nodes {x1, ..., x,} and weights {wy, ..., w,} be so chosen that

L,(f) = I(f) for all polynomials f(x) of as large a degree as possible.

Casen =1 The integration formula has the form

1
fl fx)dx ~ wy f(x1) (5.51)

It is to be exact for polynomials of as large a degree as possible.
Using f(x) = 1 and forcing equality in (5.51) give us

2=w1

53 GAUSSIAN NUMERICAL INTEGRATION 221

Now use f(x) = x and again force equality in (5.51). Then
0= wi1X,

which implies x; = 0. Thus, (5.51) becomes

1
f . fx)dx = 2£(0) = I,(f) (5.52)

This is the midpoint formula of Problem 8(a) in Section 5.1. The formula (5.52) is exact
for all linear polynomials; the proof is left as Problem 7 for the reader.

To see that (5.52) is not exact for quadratics, let £ (x) = x2. Then the errorin (5.52)
is given by

1
/lxzdx——Z(O)z:%#O

Following Problem 11 of Section 5.1, the formula (5.52) has degree of precision 1.

Casen =2 The integration formula is

1
f F@dx i f)+ waf) (5.53)

and it has four unspecified quantities: x;, x5, wy, and w,. To determine these, we require
it to be exact for the four monomials

fx)=1,x, x% x° (5.54)
This leads to the four equations .

2= w1 + wy

0 = wix; + wexy

% = wix? + wyx} (5-35)

0= wle -+ wzxg
This is a nonlinear system in four unknowns; its solution can be shown to be

3 3
W =1wp =1, x1=—§, xzz—*g-: (5.56)

along with one based on reversing the signs of x; and x;.

222

Example 5.3.2

Chapter 5 NUMERICAL INTEGRATION AND DIFFERENTIATION

This yields the integration formula

1
/ fdi~ f (—~?> +f (?) = L(f) (5.57)

From being exact for the monomials in (5.54), one can show this formula will be exact
for all polynomials of degree < 3 (cf. Problem 6). It also can be shown by direct
calculation to not be exact for the degree 4 polynomial f(x) = x*. Thus, L(f) has
degree of precision 3.

Approximate

1

I= / e dx =e—e”! =2.3504024
-1

Using (5.57), we get

L =e V3B 1 o33 = 23426961
I — L = 0.00771

The error is quite small for using such a small number of node points. &

Casen > 2 We seek the formula (5.50), which has 2» unspecified parameters, xi, . . .,
Xp, Wi, . .., Wy, by forcing the integration formula to be exact for the 27 monomials

fx)y=1,xx2 ..., x! (5.58)

In turn, this forces I,(f) = I(f) for all polynomials f of degree < 2n — 1. This leads
to the following system of 2z nonlinear equations in 2n unknowns:

2=wi+wr+- -+ w,
0=wixr +waxz + -+ Wy,

S U SRR
O=w1xf+w2x§+---+wnx,3, (5.59)

2
2n-2 2n-2
= wiXx + et wex
2n—1 ! "

0= w2xl2"_l oo wpx 2t

The resulting formula 7, (f) has degree of precision 2n — 1.

53 GAUSSIAN NUMERICAL INTEGRATION

Table 5.7. Nodes and Weights of Gaussian Quadrature Formulas

n X w;
2 +0.5773502692 1.0
3 +0.7745966692 0.5555555556
0.0 0.8388888889
4 +0.8611363116 0.3478548451
+0.3399810436 0.6521451549
5 +0.9061798459 0.2369268851
+0.5384693101 0.4786286705
0.0 0.5688888889
6 +0.9324695142 0.1713244924
+0.6612093865 0.3607615730
+0.2386191861 0.4679139346
7 +0.9491079123 0.1294849662
+0.7415311856 0.2797053915
+0.4058451514 0.3818300505
0.0 0.4179591837
8 +0.9602898565 0.1012285363
+0.7966664774 0.2223810345
+0.5255324099 0.3137066459
30.1834346425 0.3626837834

223

Solving this system is a formidable problem. Thankfully, the nodes {x;} and weights
{w;} have been calculated and collected in tables for the most commonly used values of
n. Table 5.7 contains the solutions for n = 2,3,...,8. For more complete tables, see
A. Stroud and D. Secrest (1966). Most Computer centers will have programs to produce
these nodes and weights or to directly perform the numerical integration.

There is also another approach to the development of the numerical integration
formula (5.50), using the theory of orthogonal polynomials. From that theory, it can be
shown that the nodes {xi, ..., x,} are the zeros of the Legendre polynomial of degree n
on the interval [—1, 1]. Recall that these polynomials were introduced in Section 4.7 of
Chapter 4. For example,

Py(x) =3 (3x* - 1),

and its roots are the nodes given in (5.56). Since the Legendre polynomials are well
known, the nodes {x;} can be found without any recourse to the nonlinear system (5.59).
For an introduction to this theory, see Atkinson (1989, p. 270).

The sequence of formulas (5.50) is called the Gaussian numerical integration
method. From its definition, I, (f) uses n nodes, and it is exact for all polynomials

224

Example 5.3.3

Chapter 5 NUMERICAL INTEGRATION AND DIFFERENTIATION

of degree < 2n — 1. I,(f) is limited to (5.49), an integral over [—1, 11; but this limita-
tion is easily removed. Given an integral over [a, b]

b
1) = / Fx)dx

introduce the linear change of variable

b+a+tb—a)
X=—

2

transforming the integral to

b— L
1<f>=~—2—-‘5/1f<t>dr

with

Now apply l,l(f) to this new integral.

f(t)=f<b+a+t(b—a)

2

, —-1<t<1

(5.60)

(5.61)

(5.62)

(5.63)

Apply Gaussian numerical integration to the three integrals I®, I®, and I of (5.14)
to (5.16), which were used as examples for the trapezoidal and Simpson rules in Section
5.1. All are reformulated as integrals over [—1, 1], in the manner described above. The
error results are shown in Table 5.8. The entry () means the error was zero relative to

the accuracy possible on the computer being used (around 16 decimal digits).

If these results are compared to those in Tables 5.1 and 5.2, then Gaussian integration
of IV and I® is much more efficient than are the trapezoidal and Simpson rules. But

Table 5.8. Gaussian Numerical Integration Examples

n Error in Errorin 1@ Errorin I®
2 2.29E — 4 —233E-2 8.23E -1
3 9.55E — 6 —~3.49E -2 " —4.30E-1
4 ~3.35E -1 —1.90E -3 1.77E -1
5 6.05E — 9 1.70E — 3 —~8.12E -2
6 ~777E - 11 274E — 4 3.55E—2
7 7.89E — 13 ~6.458—5 —1.58E -2

10 * 12766 137E -3

15 * 7.40E — 10 -233E-5

20 ¥ . 3.96E — 7

Example 5.3.4

Theorem 5.3.5

5.3 GAUSSIAN NUMERICAL INTEGRATION 225

Table 5.9. Gaussian Integration of (5.64)

n 1—-1, Ratio
2 —7.22E -3
4 —1.16E - 3 6.2
8 —~1.69E — 4 6.9
16 —2.30E ~5 7.4
32 —3.00E - 6 7.6
64 —3.84E -7 7.8

the integration of the periodic integrand of I is not as efficient as with the trapezoidal
rule. These results are also true for most other integrals. Except for periodic integrands,
Gaussian numerical integration is usually much more accurate than the trapezoidal and
Simpson rules. This is even true with many integrals in which the integrand does not
have a continuous derivative. &

Use Gaussian integration on

1
1=/’ﬁdx=§ (5.64)
0

The results are shown in Table 5.9, with n the number of node points. The ratio column
is defined as

-1,
-1,

—

and it shows that the error behaves like
I-L~= (5.65)
n

for some c. Compare this with Table 5.4, which gives the results of Simpson’s rule for
(5.64). There the empirical rate of convergence is proportional to only 1/7!, a much
slower rate than in (5.65).

We give an additional result that relates the minimax error to the Gaussian numerical
integration error.

Let f(x) be continuous for a < x < b, and let n > 1. Then, if we apply Gaussian

b
numerical integration to / = / f(x)dx, the error in I, satisfies
. a

!

i
fl
i

226

Example 5.3.6

Chapter 5 NUMERICAL INTEGRATION AND DIFFERENTIATION

() = L(H)] < 2(b — a)pan-1(f) (5.66)

where pz,_1(f) is the minimax error of degree 2n — 1 for f(x) on [a, b].
Using Table 5.6, apply (5.66) to
v .
1= / e ™ dx 5.67) |
o i
For n = 3, the above bound implies

Il — L] < 2ps(e™™") =3.24 x 1073

The actual error is 9.55E — 6 from Table 5.8. =

Gaussian numerical integration is not as simple to use as are the trapezoidal and
Simpson rules, partly because the Gaussian nodes and weights do not have simple for-
mulas and also because the error is harder to predict. Nonetheless, the increase in the
speed of convergence is so rapid and dramatic in most instances that the method should
always be considered seriously when one is doing many integrations. Estimating the
error is quite difficult, and most people satisfy themselves by looking at two or more
successive values. If n is doubled, then repeatedly comparing two successive values, I,
and I,,, is almost always adequate for estimating the error in I,

I-1I,~L,—1, (5.68)

This is somewhat inefficient, but the speed of convergence in I, is so rapid that this will
still not diminish its advantage over most other methods.

5.3.1 Weighted Gaussian Quadrature

A common problem is the evaluation of integrals of the form

b
1(f) = f w(x) f(x) dx (5.69)

with f(x) a “well-behaved” function and w(x) a possibly (and often) ill-behaved func- .
tion. Gaussian quadrature has been generalized to handle such integrals for many func- -
tions w(x). Examples include]

lﬂ-dx /1ﬁf(x)dx /lf(x)lo (1) dx
aAT—%2) ’ 0 g X

The function w(x) is called a weight function.

5.3 GAUSSIAN NUMERICAL INTEGRATION 227

We begin by imitating the development given earlier in this section, and.we do so
for the special case of

I(f) = f A, : (5.70)

in which w(x) = 1/./x. As before, we seek numerical integration formulas of the form

n
L(f) =) w;f(x) (5.71)
j=1
and we require that the nodes {xi, ..., x,} and weights {w, ..., wy} be so chosen that

I,(f) = I1(f) for polynomials f (x) of as large a degree as possible.

Casern =1 The integration formula has the form

I—(——)dx ~ wyf(x)

o x
We force equality for f(x) = 1 and f(x) = x. This leads to the equations

LS|
w; = —dx =2
' ./0«/55

1
X
2
w1x1=/ —dx =%
0 X ?

Solving for w; and x;, we obtain the formula

/ ID) g map () (5.72)

and it has degree of precision 1.

Casen =2 The integration formula has the form

1

X
| L) e~ wn f) + wnf) (5.73)

0 X

We force equality for f(x) = 1, x, x2, x3. This leads to the equations
|
w1+w2=/ —dx =2
0

Jx

1
X
w1X1+w2xz=f —dx =}
0 VX

E or o n..T TI @ E.3F. ¥

Wi

228

Chapter 5 NUMERICAL INTEGRATION AND DIFFERENTIATION

This has the solution

x =32 - 2J/30=0.11559, x =3+ %+/30 =0.74156
wy =1+ 4£+/30= 130429, wy =1— £;+/30 = 0.69571

The resulting formula (5.73) has degree of precision 3.

Casen > 2 We seek the formula (5.71), which has 2r unspecified parameters, xy, . ..,
Xn» W, - . ., Wn, by forcing the integration formula to be exact for the 2n monomials

fx) = 1, x,x2, ..., x!

In turn, this forces I,(f) = I (f) for all polynomials f of degree < 2n — 1. This leads
to the following system of 2n nonlinear equations in 2n unknowns:

wy+wy - w, =2
WXy + waXxgy + - A WeXp = %
wixd +waxl 4+ wxt =2 (5.74)
2n—1 2n-1 2
Wa Xy + 0 wpx, =4n___1

The resulting formula I,(f) has degree of precision 2n — 1. As before, this system is
very difficult to solve directly, but there are alternative methods of deriving {x;} and
{w;}. It is based on looking at the polynomials that are orthogonal with respect to the
weight function

w(x) = —1-

Vx

on the interval [0, 1].

Example 5.3.7 We evaluate

1
I f Cos(TX) ;1 = 0.74796566683146
(V]

5.3 GAUSSIAN NUMERICAL INTEGRATION 229

using (5.72) and (5.73):

L =10
I, =0.740519

I, is a reasonable estimate of I, with] — I, =0.00745. =

A general theory can be developed for weighted Gaussian quadrature
b n
1= [(w@r@ar~ Y w s = oo 5.75)
a j=l

It requires the following assumptions for the weight function w (x):

Al. w(x)>O0fora <x < b;
A2. For all integers n > 0,

b
/ w(x) |x["dx < oo

These hypotheses are the same as were assumed for the generalized least squares ap-
proximation theory following (4.124) in Section 4.7 of Chapter 4. This is not accidental
since both Gaussian quadrature and least squares approximation theory are dependent on
the subject of orthogonal polynomials. The node points {x;} solving the system (5.74)
are the zeros of the degree n orthogonal polynomial on [, b] with respect to the weight
function w(x) = 1/./x. For the generalization (5.75), the nodes {x;} are the zeros of the
degree n orthogonal polynomial on [a, b] with respect to the weight function w(x). For
more on general Gaussian quadrature formulas (5.75), see Atkinson (1989, Section 5.3).

1

PROBLEMS 1. Recalling the example following (5.57), apply I; and I, to f ¢*dx. Use the
-1
nodes and weights given in Table 5.7.

2. Apply I, I, and I, to the integrals from Problems 2(a) to (®) of Section 5.1.
Calculate the errors and compare them with the earlier results for the trapezoidal
and Simpson rules. If your computer center has a,Gaussian numerical integration
program, then do these same calculations for Is, ..., L.

3. Repeat the example following (5.67) with n = 2,4, and 5.

4. Repeat Problem 4 of Section 5.1, but use the Gaussian numerical integration for-
mula with n = 1,2,..., 8. Begin by transforming the integrals to the standard
interval [—1, 1], as in (5.60-5.63).

230

Chapter 5 NUMERICAL INTEGRATION AND DIFFERENTIATION

10.

Repeat Problem 5 of Section 5.1, but use the Gaussian numerical integration for- -
mula with n = 1,2, ..., 8. Begin by transforming the integrals to the standard 8

interval [—1, 1], as in (5.60-5.63).

Show that if an integration formula of the form (5.50) is exact when integrating |

1,x,x2, ...,x™, then it is exact for all polynomials of degree < m.
Hint: Recall Problem 10 in Section 5.2.

Show that the one-point formula (5.52) is exact whenever f(x) is a linear poly-
nomial.

Determine constants ¢; and ¢; in the formula

1
fo £ ~ e f©) + caf (1)

so that it is exact for all polynomials of as large a degree as possible. ‘What is the
degree of precision of the formula?

For the formula

1
fo £~ w1 £(0) + w2 f (x2)

determine the weights wy, w; and the node x; so that the formula is exact for all

polynomials of as large a degree as possible. What is the degree of precision of
the formula?

Consider integrals

1 1
1) = / F@)log (—) dx
0 X

with f(x) a function with several continuous derivatives on 0 < x < 1. Repeat

the ideas of (5.69-5.75) to develop the following formulas:
(a) Find a formula

! 1
/ f(x)log (;) dx = wy f(x1) = Li(S)
0
which is exact if f(x) is any linear polynomial.
Hint: log (—1-> = —logx, and
x

1
,[0 x’"log(x)dx::m, m20

5.3 GAUSSIAN NUMERICAL INTEGRATION 231
(b) To find a formula

1 1
/(; f(x)log (;) dx = wy f(x1) +wa f(x2) = L(f)

which is exact for all polynomials of degree < 3, set up a system of four
equations with unknowns wj, ws, X1, x3. Do not attempt to solve the system,
although the methods of Section 5.3 can be used. Instead, show that

x1=15-~/'1'0'6" x2=15 +Jii@€,
42 42
21 1
"= (emi) metow

is a solution of the system.
(c) Use ; of (a) and I, of (b) to approximate

1
I =/ cos(x) log (l) dx
0 X

whose true value is 7 = 0.9460831.

(d) Apply the midpoint rule [cf. Problem 8(b) of Section 5.1]withn =2,4,8
to the integral /. Compare the results with that from (c).

11. Consider approximating integrals of the form

1
1) = fo JEF(x)dx

in which f(x) has several continuous derivatives on [0, 1].
(a) Find a formula

1
/0 VEf(x)dx ~ w f () = L(f)

which is exact if f(x) is any linear polynomial.
(b) To find a formula

"

1
fo JEFG) dx & wyF () + waf () = D(S)

which is exact for all polynomials of degree < 3, set up a system of four
equations with unknowns wy, wy, x1, x,. Verify that

232

5.4.

Chapter 5 NUMERICAL INTEGRATION AND DIFFERENTIATION

Ko

Il
\O| =
TN

(9]

+

(3]
L=
\-/

>

()

Il
=
TN
wh
|
[(]
NE
~——

is a solution of the system. The verification can be numerical-(say using
Matlab) or symbolic (say using Maple or Mathematica). '

(¢) Apply I; and I, to the evaluation of
1
I= / Jxe ™ dx = 0.37894469164
0

(d) Apply the midpoint rule [cf. Problem 8(b)] withn =2, 4,8 to the integral
I. Compare the results with that from (c).

12. Consider the proof of Theorem 5.3.5. For a given continuous function f(x)on
[a, b] and for n > 0, let g2,—1(x) be the minimax approximation of degree 2n — 1

to f(x):

max | £() = -1 ()] = pract ()

(@) Show I,(q2n-1) = I(g21-1)
(b) Show
I(f) - In(f) = [(f - an—-l) - In(f - Q’.’.n-1)

(¢) It can be shown that for any n > 1, all weights in the Gaussian quadrature
formula I,(f) satisfy w; > 0. Show that

[1(f) = 1(g2n-D| = (b — @) p2n-1(f)
|1 () = In(g2n-1)| < (b — @) p2n1(f)

Then complete the proof of Theorem 5.3.5.

NUMERICAL DIFPERENTIATION

To numerically calculate the derivative of f(x), begin by recalling the definition of
derivative:

o fEHR = f®
£ =m %

Example 5.4.1

5.4 NUMERICAL DIFFERENTIATION 233

Table 5.10. Numerical Differentiation of f(x) = cos(x) Using (5.76)

h D, f Error Ratio
0.1 —0.54243 0.04243

0.05 —-0.52144 0.02144 1.98
0.025 -0.51077 0.01077 1.99
0.0125 —0.50540 0.00540 1.99
0.00625 -0.50270 0.00270 2.00
0.003125 —-0.50135 0.00135 2.00

This justifies using

fx+h)— fx)

flx) =~ h

= Dy f(x) (5.76)

for small values of 4. Dy, f (x) is called a numerical derivative of f(x) with stepsize h.

Use Dy, f(x) to approximate the derivative of f(x) = cos(x) at x = /6. Table 5.10
contains the results for various values of 4. Looking at the error column, we see the
erroris nearly proportional to 4; when 4 is halved, the error is almost halved. =

To explain the behavior in this example, Taylor’s theorem can be used to find an
error formula. Expanding f (x + &) about x, we get

h2
fGx+h) = f@x)+hf'(x)+ Tf”(c)

for some ¢ between x and x + h. Substituting on the right side of (5.76), we obtain

1 h?
Difx) =+ {[f(x) +hf'(x) + ~2~f”(0)] - f(X)}
h
= f'(x)+ -z-f"(C)
h
@) = Dpf(x) = —Ef”(c) (5.77)

.

The error is proportional to %, agreeing with the results in Table 5.10 above. For that
example,

f (%) —Duf (-’-6’-) = —Z—cos(c) (5.78)

234

Chapter 5 NUMERICAL INTEGRATION AND DIFFERENTIATION

where c is between 67: and 67r + h. The reader should check that if ¢ is replaced by
7t then the right side of (5.78) agrees with the error column in Table 5.10.
As seen from Example 5.4.1, we use the formula (5.76) with a positive stepsize
h > 0. The formula (5.76) is commonly known as the forward difference formula for
the first derivative. We can formally replace & by —A in (5.76) to obtain the formula

- —h .
flx) = ﬂ&—}{-@——l h>0 (5.79)
This is the backward difference formula for the first derivative. A derivation similar to
that leading to (5.77) shows that

f@ - fx=m _h

Y 5/ (5.80)

) -

for some c between x and x — #. Thus, we expect the accuracy of the backward difference
formula to be almost the same as that of the forward difference formula.

5.4.1 Differentiation Using Interpolation

Let P,(x) denote the degree n polynomial that interpolates f(x) at n + 1 node points
X0, X1, - - . » Xz. To calculate f'(x) at some point.x = ¢, use

'@ = Pt (5.81)

Many different formulas can be obtained by varying » and by varying the placement of
the nodes xg, . .. , X, relative to the point ¢ of interest.

As an especially useful example of (5.81), take n = 2, t = x1, X0 = X} — h,xy =
xi + k. Then

Pox) = (———x—‘z);fi‘———lf(o+ ETEI pi)
(x —x0)(x — x1)
+ EREE po)

- i
Py(x) = (—-—2’;—‘——) fx0) + (-——xh—i‘i) EN)
2Xx —xg— X
+ <—2h%———1> f(x2)

2xq — xg —
Pz'(x1)=(2)f(0)+<—£L_L};—J‘C'2')f(x1)+(e)f(xz)

_ fx) = fxo)
B 2h

(5.82)

Theorem 5.4.2

Example 5.4.3

5.4 NUMERICAL DIFFERENTIATION 235

Replacing xq and x; by x; — & and x; + h, from (5.81) and (5.82) we obtain

fGa+h) - fxi—h)
2h '

flee) =~ = Dy f(x1) (5.83)
another approximation to the derivative of f(x), called the central difference formula.
It will be shown below that this is a more accurate approximation to f’(x) than is the
Dy, f (x) of (5.76).

The error for the general procedure (5.81) can be obtained from the interpolation
error formula (4.53) in Chapter 4. The main result is given in the following theorem;
the proof is omitted.

Assume f(x) has n + 2 continuous derivatives on an interval [a, b]. Let xq, x1, ..., X,
be n + 1 distinct interpolation nodes in [a, b], and let ¢ be an arbitrary given point in
[a, b]. Then

(#n+2) (1)
f (Cl)+w’(z)f (c2) (5.84)

PO = B0 = O + V)"

with
W, (t) = (¢ — x0)(t —x1) -+ (t — Xp)

The numbers c; and ¢, are unknown points located between the maximum and minimum
of xg, x1,...,x, and ¢.

To illustrate this result, an error formula can be derived for (5.83). Since ¢ = x; in
deriving (5.83), we find that the first term on the right side of (5.84) is zero. Also n = 2
and

Wo(x) = (x — x0)(x — x1)(x — x2)
Wi (x) = (x —x1)(x — x2) + (X — %) (x — x2) + (x — x0)(x — x1)

W (x1) = (31 — x0) (x1 — x2) = —h?

Using this in (5.84), we get

_fath - foa-h _ #
2h T 6

f'Gen) " (e2) (5.85)
with x; — & < ¢; < x; + k. This says that for small values of %, the formula (5.83)
should be more accurate than the earlier approximation (5.76), because the error term of
(5.83) decreases more rapidly with 4.

The earlier example in Table 5.10 is repeated using (5.83). Recall that f(x) = cos(x)

and x; = érr. The results are shown in Table 5.11, with (5.83) given in the column

236 Chapter 5 NUMERICAL INTEGRATION AND DIFFERENTIATION

Table 5.11. Numerical Differentiation Using (5.83)

h D, f . Error Ratio
0.1 —0.49916708 —0.0008329

0.05 —0.49979169 —0.0002083 4.00
0.025 —0.49994792 —0.00005208 4.00
0.0125 —0.49998698 -0.00001302 4.00
0.00625 —0.49999674 —0.000003255 4.00

labeled Dy, f. The results confirm the rate of convergence given in (5.85), and they
illustrate that (5.83) will usually be superior to the earlier approximation (5.76).
5.4.2 The Method of Undetermined Coefficients
The method of undetermined coefficients is a procedure used in deriving formulas for
numerical differentiation, interpolation, and integration. We will explain the method by
using it to derive an approximation for f”(x).

To approximate f”(x) at some point x = ¢, write

@)~ DP f&) = Aft+h) + Bf@) + Cf(t —h) (5.86)

with A, B, and C unspecified constants. Replace f(t — &) and f (¢ -+ h) by the Taylor
polynomial approximations

t—h)= f(&) —hf'(t ﬁ”t) il ”’t+h4 @t
fa—m = f@)—hf'O)+ = 1) = 70 YTAN

5 2 y 4 (5.87)
s f+nm~f@+hf'®)+ 7]”’(1‘) + —6—f”’(f) + Ezf(‘”(t)

ol

.

f‘j" Including more terms would give higher powers of 4; and for small values of &, these
1;‘ additional terms should be much smaller than the terms included in (5.87). Substituting
el these approximations into the formula for D,(f) f () and collecting together common

powers of i give us

":":“
2
DPfity~(A+B+O)f) +h(A—C)f'(t) + %(A +C)f"(@)
(5.88)

Wy

+——3A—C ”/l“+———4 A+ C @
To have

DR F@) =~ f(t) (5.89)

Example 5.4.4

5.4 NUMERICAL DIFFERENTIATION 237

for arbitrary functions f(x), it is necessary to require .

A+B+C=0: coefficient of f@
h(A—C)=0: coefficient of f'(z)

h2
7(A +C)=1: coefficient of £(z)

This system has the solution

1 2
A=C=—h—2, B=—E§ (5.90)
This determines
DR f(r) = J@+h) =2f@)+ f(t —h) (5.91)

hZ

To determine an error formula for D,Ez) S (2), substitute (5.90) into (5.88) to obtain

h2
DPf®) ~ f'() + 590

The approximation in this arises from not including terms in the Taylor polynomials
(5.87) corresponding to higher powers of 4. Thus,

_ _ 32

This is an accurate estimate of the error for small values of . Of course, in a practical
situation we would notknow £ (¢). But the error formula shows that the error decreases
by a factor of about 4 when % is halved. This can be used to justify Richardson’s
extrapolation to obtain an even more accurate estimate of the error and of f"(¢); see
Problem 6. '

Let f(x) = cos(x), t = g, and use (5.91) to calculate f”(¢) = — cos (37). The re-
sults are shown in Table 5.12. Note that the ratio column is consistent with the error
formula (5.92).

In the derivation of (5.91), the form (5.86) was assumed for the app}oximate deriva-
tive. We could equally well have chosen to evaluate f (x) at points other than those used
there, for example,

') = Af(t +2h) + Bf(t + h) + Cf () (5.93)
Or, we could have chosen more evaluation points, as in

F(t) = Af(t +3h) + Bf (t + 2h) + Cf(t+h)y+ Df() (5.94)

238

Chapter 5 NUMERICAL INTEGRATION AND DIFFERENTIATION

Table 5.12. Numerical Differentiation Using D f

h D,(Iz) f . Error Ratio
0.5 —0.84813289 —1.789E -2

0.25 —0.86152424 —~4.501E -3 3.97

0.125 —0.86489835 —1.127E -3 3.99

0.0625 —0.86574353 —2.819E —- 4 4.00

0.03125 —0.86595493 —7.048E — 5 4.00

The extra degree of freedom could have been used to obtain a more accurate approxima-
tion to f”(¢), by forcing the error term to be proportional to a higher power of 4. Both
of the possibilities (5.93) and (5.94) are explored in Problem 10.

Many of the formulas derived by the method of undetermined coefficients can also
be derived by differentiating and evaluating a suitably chosen interpolation polynomial.
But often, it is easier to visualize the desired formula as a combination of certain function
values and to then derive the proper combination, as was done above for (5 91).

5.4.3 Effects of Error in Function Values

The formulas derived above are useful for differentiating functions that are known analyt-~
ically and for setting up numerical methods for solving differential equations. Nonethe-
less, they are very sensitive to errors in the function values, especially if these errors
are not sufficiently small compared with the stepsize & used in the differentiation for-
mula. To explore this, we analyze the effect of such errors in the formula D,(lz) f@®
approximating f”(t).

Rewrite (5.91) as

f(x2) =2 f(x1) + f(xo)
2

D f(x1) = ~ f"(x1) (5.95)

where x; = x1 + h;\xo =x — h. Let the actual function values used in the computation
be denoted by fo, f1, and f> with

fa)—fi=e, i=0,1,2 (5.96)

the errors in the function values. Thus, the actual quantity calculated is

h-2h+h

B fo = 2=

(5.97)

Example 5.4.5

5.4 NUMERICAL DIFFERENTIATION 239

For the error in this quantity, replace f; by f(x;) =€, j =0, 1,2, to obtain.

£y = DR o) = gy — LD €2l = 2[f(x;l)2 — 1]+ [£ (x0) = o]

flx) = 2f(x) + f(xo)] La-2atq
h? n2

€ —2e+ ¢

T

= [f”(xl) -

2

~ = () 4 (5.98)
12

The last step used (5.92).
R jhe eITOrs €0, €1, € are generally random in some interval [—8, §]. If the values ﬁ;,
1. f2 are experimental data, then & is a bound on the experimental error. Also, if these
function values f; are obtained from computing f(x) in a computer, then the errors ¢;
are the combination of rounding or chopping errors and § is a bound on these errors. In
either case, (5.98) yields the approximate inequality

~ h? 45
o) = D2 fan)| < = | F9)| + — (5.99)
12 h?

This error bound suggests that as # — 0, the error will eventually increase, because of
the final term 48/ h?.

As acontrast to this behavior in the error, recall Problem 22 from Section 5.2. In that
problem, it was shown that the change in the numerical inte gral due to error in the function
values was bounded independently of the integration parameter n (or equivalently, of
the mesh size #). This is not true of numerical differentiation, as indicated in (5.98)
or (5.99).

Calculate 5,(12) (xp) for f(x) =cos(x) atx; = %n’. To show the effect of rounding errors,
the values f; are obtained by rounding f (x;) to six significant di gits; and the errors satisfy

] <5.0x 1077 =5, i=012

Other than these rounding errors, the formula 5,52) S (x1) is calculated exactly. The results
are shown in Table 5.13. In this example, the bound (5.99) becomes

" N n? 1 4 7
#"(x) — D f(m)lsﬁcos e)+ (3) 6 x 107

2x107¢ 100
2z |

For & = 0.125, the bound E (k) = 0.00126, which is not too far off from the actual error
given in the table.

The bound E (k) indicates that there is a smallest value of &, call it h*, below which
the error bound will begin to increase. To find it, let E(h) = 0, with its root being 4.

= 0.0722h2 + =E(h)

240

Chapter 5 NUMERICAL INTEGRATION AND DIFFERENTIATION

Table 5.13. Calculation of D f (x;)

h 5,(,2) fxp) Error
0.5 —0.848128 —0.017897
0.25 —0.861504 —0.004521
0.125 —0.864832 —0.001193
0.0625 —0.865536 = —0.000489
0.03125 —0.865280 —0.000745
0.015625 —0.860160 —0.005865
0.0078125 —0.851968 —0.014057
0.00390625 —0.786432 —0.079593
E(h)
A
0.02 -
0.01
1 1 i 1 ! i | I »- h

005 01 015 02 025 03 035 04
Figure 5.6. 'The graph of E(k) from (5.100)

This leads to A+ = 0.0726, which is consistent with the behavior of the errors in Table
5.13. Also, see the graph of E (k) in Figure 5.6. =

One must be very cautious in using numerical differentiation, because of the sen-
sitivity to errors in the function values. This is especially true if the function values are
obtained empirically with relatively large experimental errors, as is common in prac-
tice. In this latter case, one should probably use a carefully prepared package program
for numerical differentiation. Such programs take into account the error in the data,
attempting to find numerical derivatives that are as accurate as can be justified by the
data. In the absence of such a program, one should consider producing a cubic spline-

PROBLEMS

5.4 NUMERICAL DIFFERENTIATION 241

function that approximates the data, and then use its derivative as a numerical derivative
for the data. The cubic spline function could be based on interpolation; or better for data
with relatively large errors, construct a cubic spline that is a least squares approximation
to the data. The concept of least squares approximation is introduced in Section 7.1 of
Chapter 7.

1.

In the following instances, find the numerical derivative Dy, f(x) at the indicated '
point, using formula (5.76). Use A = 0.1, 0.05, 0.025, 0.0125, 0.00625. As in
Table 5.10, calculate the error and the ratio with which the error decreases. Also,
estimate the error by using (5.77) with ¢ replaced by x.

(@ fx)=eatx=0.
) fx)=tan'@xZ—x+Datx=1.
(© f(x) =tan"1(100x% — 199x + 100) at x = 1.

Repeat Problem 1, but use the backward difference formula (5.79) and estimate the
error using (5.80), replacing ¢ by x. Compare the errors of the backward difference
formula with those of the forward difference formula calculated in Problem 1.

Repeat Problem 1, but use the numerical derivative Dy, f (x;) from (5.83) and
estimate the error using (5.85) with ¢, replaced by x;.

Let A >0, x; =xo+ jh for j =0,1,2,...,n, and let P,(x) be the degree n
polynomial interpolating f(x) at xo,...,x,. Use this polynomial to estimate
f'(x0). Produce the actual formulas involving f(xo), ..., f(x,) forn = 1,2, 3, 4.
Also produce their error formulas.

Use the degree 4 polynomial P4 (x), defined in Problem 4, to find an approximation
to f'(x;). Also find its error formula.

The error formulas (5.77), (5.85), and (5.92) all are nearly proportional to a power
of i. These justify the use of Richardson’s extrapolation, as in Section 5.2. For
(5.76), derive the extrapolation formula

f'(x) 22D, f (x) — Doy f (x)

and show its error converges to zero more rapidly than does the error for (5.76).
Derive corresponding extrapolation formulas for (5.83) and (5.91), based on the
error formulas (5.85) and (5.92).

Use the extrapolation formula for (5.76), given in Problem 6, to improve the
answers given in Table 5.10. Produce a table of extrapolated values from Table
5.10. Include the errors in the extrapolated values and the ratios by which they
decrease. :

Use the polynomial P, (x) preceding (5.82) to obtain an estimate for f”(x;). Com-
ment on the resulting formula.

»
b

A
iy,

242

Chapter 5 NUMERICAL INTEGRATION AND DIFFERENTIATION

10.

11.
12.
13.

14.

Use D,(IZ) S (x) from (5.91) to estimate f”(x) for the functions and points in Problem
1. Also calculate the errors and the ratios by which they decrease. Use & = 0.5,
0.25, 0.125, 0.0625, 0.03125.

(a) Use the method of undetermined coefficients to derive the formula (5.93),
with the error as small as possible.

(b) Use the method of undetermined coefficients to derive the formula (5.94),
with the error as small as possible.

Repeat the example summarized in Table 5.13, but use f(x) = ¢* and x; = 0.
Repeat the rounding error analysis that led to (5.98), but do it for Dy, f (¢) in (5.83).

On your comFuter with single precision arithmetic, perform the numerical differ-
entiation D{? £ (¢) of (5.91). Successively halve h, calculating D f(¢) and its
error; continue this until the error begins to increase.

Using the following table of rounded values of f (x), estimate £ (0.5) numerically
with stepsizes & = 0.2, 0.1. Also estimate the possible size of that part of the error
in your answer that is due to the rounding errors in the table entries. Is this a
serious source of error in this case?

x Ffx) x fx)
0.3 7.3891 0.6 7.6141°
0.4 7.4633 0.7 7.6906

0.5 7.5383

SOLUTION OF SYSTEMS
OF LINEAR EQUATIONS

li...coo.00.0-00..0l00.0........Q...ol0.0..0.0.0-.0o..o.‘c0.00..000000..0‘0!...

Systems of simultaneous linear equations occur in solving problems in a wide variety
of disciplines, including mathematics, statistics, the physical, biological, and social
sciences, engineering, and business. They arise directly in solving real-world problems,
and they also occur as part of the solution process for other problems, for example,
solving systems of simultaneous nonlinear equations. Numerical solutions of boundary
value problems and initial boundary value problems for differential equations are a rich
source of linear systems, especially large-size ones. In this chapter, we will examine
some classical methods for solving linear systems, including direct methods such as
the Gaussian elimination method, and iterative methods such as the Jacobi method and
Gauss—Seidel method. :

The notation and theory for linear systems are given in the first section, and a
general method of solution is given in Section 6.3. Most work with systems of linear
equations is simpler to express and understand when matrix algebra is used, and this is
introduced in Section 6.2. By using matrix algebra, in Sections 6.4 and 6.5 we extend
the ideas of Section 6.3 for solving linear systems and consider special types of linear

243

244

Chapter 6 SOLUTION OF SYSTEMS OF LINEAR EQUATIONS

systems and the effects of rounding errors. Section 6.6 introduces the idea of an iteration
method for solving linear systems, giving some of the more common and simple iteration
procedures. :

6.1. SYSTEMS OF LINEAR EQUATIONS

Example 6.1.1

One of the topics studied in elementary algebra is the solution of pairs of linear equations,
such as

ax by =c¢ 6.1)
dx+ey=f

The coefficients a, b, ..., f are given constants, and the task is to find the unknown
values x, y. In this chapter, we examine the problem of finding solutions to larger
systems of linear equations, containing more equations and unknowns.

To write the most general system of linear equations that we will study, we must
change the notation used in (6.1) to something more convenient. Let n be a positive
integer. The general form for a system of z linear equations in the n unknown components
X1, X2y -0, Xg 1S

anx; + appxy + apsxa + -+ anxn = by
a1%1 + %y + apxs + -+ AonXn = b2 6.2)

an1 X1 + anaX2 + Au3X3 + - - A QppXn = by

The coefficients are given symbolically by a;;, with i the number of the equation and
j the number of the associated unknown component. On some occasions, to avoid
possible confusion, we also use the symbol g; ;. The right-hand sides by,..., b, are
given numbers; and the problem is to calculate the unknowns xi, ..., X,. The linear
system is said to be of order n.

Define the coefficients of (6.2) by
a;j = max{i, j} (6.3)
for 1 <i, j < n. Also define the right s‘ides by
by=by=--=by=1 6.4)

The solution of this linear system, (6.2) to (6.4), is

S |

xp=xp==X-1=0, Xn

(6.5) -

6.1 SYSTEMS OF LINEAR EQUATIONS 245

This can also be shown to be the only solution to this linear system. To make the example
more concrete, let n = 3. Then the linear system is

X1 +2x+3x3 =1
2x; +2x+3x3 =1 (6.6)
3x1 +3x 4+ 3x3 =1

and its solution is

W=
::]

x1=x2=0, X3 =

For linear systems of small orders, such as the systems (6.1) and (6.6), it is possible
to solve them by hand calculations or with the help of a calculator, with methods learned
in elementary algebra. For linear systems arising in most applications, however, it is
common to have much larger orders, from several dozens to millions. Evidently, there is
no hope to solve such large systems by hand. We need to employ numerical methods for
their solutions. For this purpose, it is most convenient to use the matrix/vector notation
to represent linear systems and to use the corresponding matrix/vector arithmetic for
their numerical treatment.

The linear system of equations (6.2) is completely specified by knowing the coeffi-
cients a;; and the right-hand constants b;. These coefficients are arranged as the elements
of a matrix:

ain aiz -+ Qe
azy 4 -+ 4

CA=) .. . (6.7)
anl Qpz ' Qpy

We say a;; is the (i, j) element or (i, j) entry of the matrix A. Similarly, the right-hand
constants b; are arranged in the form of a vector:

by
by

b= . (6.8)
by
The letters A and b are the names given to the matrix and the vector. The indices of

a;j now give the numbers of the row and column of A that contain a;;. The solution
X1, ..., X, is written similarly .

x=| (6.9)

246

| Example 6.1.2

s,

§=.

FOELE zofEroEoETrr s

oy

Chapter 6 SOLUTION OF SYSTEMS OF LINEAR EQUATIONS

For the linear system (6.6),

3
30, b=|1], x= (6.10)
3

1
A=1] 2
3 1

W NN
w0 O

In MATLAB, the matrix A can be created by any of the following:

A=[1123; 223 333]
A=[1, 2, 3; 2,2, 3; 3,3, 3];
A=[123

2273

33 3];

and commas can also be used in the last case to replace the spaces as delimiters. The
vector b can be created by

b = ones(3, 1);
More generally, for the system (6.2) to (6.4), we create the matrix as follows:

A = zeros(n,n);
for i = 1:n
A(i,1:1) =
A(i,i+1:n)
end

i;
= i+l:n;

and set up the vector b by

b = ones(n,1);

With the notations introduced in (6.7), (6.8), and (6.9), the lir}ear system (6.2) is
then written in a compact form

Ax=b (6.11)

A reader with some knowledge of linear algebra will immediately recognize that the
left-hand side of (6.11) is the matrix A multiplied by the vector x, and (6.11) expresses
the equality between the two vectors Ax and b. The system (6.11) consists of n relations,
and fori =1, ..., n, the ith relation is precisely the ith equation in the system (6.2).

Since a knowledge of linear algebra is not assumed of the reader, in the next section
we review the arithmetic and properties of matrices and vectors.

6.1 SYSTEMS OF LINEAR EQUATIONS 247

PROBLEMS 1. (a) Consider the problem of cubic polynomial interpolation
p(xi) =y, i=0,1,2,3

with deg(p) < 3 and xo, x1, X2, x3 distinct. Convert the problem of find-
ing p(x) to another problem involving the solution of a system of linear
equations.

Hint: Write
p(x) = ap + arx + apx® + ag;x3
and determine ay, a;, a2, and a3. Use the interpolation conditions to obtain

equations involving ay, ..., as.

(b) Expressing the system from (a) in the form (6.11), identify the matrix A and
the vectors b and x.

2. Repeat Problem 1, but with the following Hermite interpolation cohditions:
px)y =y, Pa)=y, i=12

where {x;, y;, y:.} are givén and x; # x;.

3. Recall the equations (4.64) to (4.65) for the interpolating cubic spline function.
Assuming the interpolation node points are evenly spaced, with a spacing of £, set
up the coefficient matrix and the right-hand side vector for this linear system.

4. Consider the matrix

3 1 0 0]
1 3 1
A=1]0 0
3 1 3 1
| 0 0 1 3]
and the vectors
4 -1
5 1
5 1
b= , X =
5 1

Set up the linear system (6.2) of order » associated with A and b. Verify that the
given x solves this linear system.

248

Chapter 6 SOLUTION OF SYSTEMS OF LINEAR EQUATIONS

5. Set up the following matrix A and vector b in MATLAB:

Lolsisjsn .
J b = -1, ieven
W= : =1 1, iodd
= 1<j=<i=n
i
6. Repeat Problem 5 with the following matrices A and b:
a1j=aj1:/3, j=1,2, s 1
aij = a;j—1,j + ai,j-1, i,j=2,3,...,n
b = (=1, i=1,...,n
Let B be an input parameter to the program, 8 # 0. Write out a specific example
when g = 1.
7. Setup in MATLAB the coefficient matrix H,1 of the linear system (4.113). Note
that
1 .
(Hn+1)i’j=:7:—i" 1_<__l,] Sn“]’l

6.2. MATRIX ARITHMETIC

In this section, we formally define matrices and vectors, their arithmetic operations, and
related properties that are useful for the numerical solution of linear systems.
A matrix is a rectangular array of numbers

by - b
B=| : .. (6.12)
bml bmn

It is said to have order m X n if m is the number of rows and » is the number of columns.
Square matrices with n rows and n columns are said to have order 7. Matrices consisting
of a single row or column are called row and column matrices, respectively. They are .
more often called row or column vectors, or simply, vectors. This is because they can
be identified with geometric vectors drawn from the origin of a space to the point with
coordinates given by the row or column matrix. This adds an important geometric per- '
spective to the study of matrices, but we will omit it here. Since vectors are special types -
of rectangular matrices, the operations and properties for general rectangular matrices
are valid for vectors also.

As notation, capital letters will be used to denote matrices; and the corresponding -
lowercase letters with -double indices will usually be used to denote matrix elements. -

Example 6.2.1

6.2 MATRIX ARITHMETIC ' 249

Vectors will be denoted by lowercase letters and its elements are denoted by the same
lowercase letters with one index; see (6.7) to (6.9) for examples. Two matrices are said
to be equal if (1) they have the same order, and (2) corresponding elements are equal.
Finally, the transpose of the general matrix in (6.12) is

by - b
Bl =| : - (6.13)
bln bmn

It is obtained by interchanging the rows and columns of B; the order of BT isn x m. In
particular, the transpose of a row vector is a column vector, and vice versa. In MATLAB,
once a matrix 4 is defined, its transpose can be obtained by A°.

implies

Also

Ahasorder2 x 3,and AT hasorder3 x 2. ®

6.2.1 Arithmetic Operations

There are three basic arithmetic operations related to matrices. The first arithmetic
operation is the multiplication of a number and a matrix. Let B be the m x n matrix
givenin (6.12) and let a be an arbitrary real number. Then a B is a matrix of order m x n,
defined by '

abyy .-+ aby,
aB=| : . (6.14)

abpy - abyy,

E=Y

250

Example 6.2.2

Chapter 6 SOLUTION OF SYSTEMS OF LINEAR EQUATIONS
Each element of B is multiplied by a to get the corresponding elementin a B. Particularly,
witha = ~1,

—by -+ —bi
(-)B= : :
—bp1 -+ —bmn

The new matrix is called the negative of B and is denoted by — B, that is,
—B=(-1)B

The second arithmetic operation is the summation for matrices of the same order.
Let A and B be matrices of order m x n. Then A + B is a new matrix of order m x n,
defined by

an+bu - aint+bn
A+ B= :
Am1 +bm1 -+ Gun + bmn

The (i, j) element of A + B is a;; + b;;. For matrix addition, there is a zero matrix.
Define the zero matrix of order m x n as having all zero entries. It is denoted by Opxx
or, more commonly, O. It has the property that

A+0=0+A=A
for any matrix A. The order of the zero matrix O is implicitly determined from the
context.
With the summation and scalar multiplication at our disposal, we can define the
matrix subtraction for matrices of the same order:
A—B=A+(—-B)

For any matrix A, we have

A—A=A+(-A)=0

6.2 MATRIX ARITHMETIC 251
32 1) [1237_[20 27_,[101
123 32 1) 720 2|7 -10 1

[23]+ 20-[5 8]0 s

The third arithmetic operation, matrix multiplication, is more complicated to define
and to calculate. Let A have order m x n and B have order n x p. Then C = AB, the
product of A and B, is a matrix of order m x p, and its general element c; ; is defined by

Cij = Zaikbkj, I<iz<m, I<j=<p (6.15)
k=1

This is the sum of the products of corresponding elements from row i of A and column
j of B. If A and B are square matrices, then AB is a square matrix of the same order.
The product of an m x n matrix A and an n column vector b is an m column vector Ab.
The definition of matrix multiplication is associated with the composition of linear
functions. A linear function mapping a vector of order to a vector of order m

anxi -+ -+ apx, X1
fx) = : A for x=

A1 X1+ + QunXn Xn

can be expressed as the product of a matrix and a vector

fx) = Ax
with
*au MR 75 P
A=
Am1 ** Qmn

Let linear functions f and g be defined by

fx) = Ax for X =

.
1
gy)=By for y=| :

Yp

252

Example 6.2.3

Chapter 6 SOLUTION OF SYSTEMS OF LINEAR EQUATIONS

Then the matrix associated with the composite function 2(y) = f(g(y))is C = AB, as
defined in (6.15).

€))
[23 2] ;_? _[14 —1]
-1 2 -1 3 1 0 -3
1 0 2 3 2
2-[53_”:545
3 5 11 5
®)
2 1 1 6
1 2 3 1 |=] 6
-1 1 1 1
©
3 2 1 x1 3x1 + 2x0 + X3
1 23 X | = x;4+2x+3x3 B
1 -1 1 X3 Xy — X2+ X3

As suggested by the last example, a system of linear equations can be written as a
matrix equation by using matrix multiplication. For example, the system

X1+ 2x+ x3=0
2x1 + 2x3 + 3x3 =3

—Xi — 3)(.'2 =2
can be written as
1 2 1 X1 0
2 2 3 X2 | =13
-1 -3 0 X3 2

The reader should check that the system will follow after performing the matrix multi-
plication on the left side and matching the corresponding elements on the two sides of

the equation.
As was noted at the end of the previous section, the general linear system

ajx) + -+ apxy = b
: (6.16)

an1 X1 + -+ Xy = by

Example 6.2.4

6.2 MATRIX ARITHMETIC ; 253

can be concisely written as

Ax=b (6.17)

When written in this way, many results become conceptually clearer. Also, results
from the theory of matrices and linear algebra can be applied to (6.17), to obtain both
theoretical results and computational methods for solving the linear system (6.16).

6.2.2 Elementary Row Operations

The Gaussian elimination method for solving linear systems, to be discussed in the next
section, will be most conveniently described in matrix form. To prepare for this, we
introduce three elementary row operations on general rectangular matrices. They are:

(i) Interchange of two rows.
(i) Multiplication of a row by a nonzero scalar.
(iii) Addition of a nenzero multiple of one row to another row.

Consider the rectangular matrix

33
A=| 2 2
1 2

W W W

We add row 2 times (—1) to row 1, and then add row 3 times (—1) to row 2 to obtain
the matrix: '

.1 0 0
1 000
1 2 31

Add row 2 times (—1) to row 1, and to row 3 as well;

010
0 0
2 3

-
—0 O

0

Add row 1 times (—2) to row 3:

—
SO =
w oo
_ OO

254

e

T a0 3 0 5

Chapter 6 SOLUTION OF SYSTEMS OF LINEAR EQUATIONS

Interchange row 1 and row 2:

1 0 0

01 00

0 31
Finally, we multiply row 3 by 1:

1 000

0100

001 1

This is a matrix obtained from the original matrix A through elementary row operations.

6.2.3 The Matrix Inverse
The number 1 satisfies
l-x=x-1=x
for all real numbers x. With matrix multiplication, the analog of 1 is the identity matrix

I, also called the unit matrix in some references. Let n > 1, and define I, to be the
square matrix of order n whose (i, j) element is

] i=j
5”‘{0, i #

With n = 3,

&
i

1
0
0

O = O
= O O

The most important property of the identity matrix is
Al, = A, I,A=A (6.18)
where A has order m x n. This is the analog of the above identity with the real number 1.
There is an identity matrix of each order n > 1. Instead of writing I, the subscript

n is usually omitted and I denotes any possible identity, with the order chosen suitably
for the given situation. For example, (6.18) would be written as

Al =]IA=A

Example 6.2.5

Theorem 6.2.6

6.2 MATRIX ARITHMETIC 255

Again, in analogy with the real numbers, we can generalize the concept of the

reciprocal of a number. Let A be a square matrix. If there is a square matrix B such that

AB =1, BA=17] 6.19)

then B is called the inverse of A. It is shown later that if A has an inverse, then it has

exactly one inverse. The inverse of A is denoted by AL, in analogy with the reciprocal

of a real number. Moreover, only one of the above statements in (6.19) about B need be
verified, for each of the statements can be deduced from the other.

(@
3 _1 1
210 q 2 1
A= 1 2 1 N A_1= —% 1 —-21-
01 2 1 _1 3
i 2 i
(b) Let

a=[ed]

Then it can be shown that A has an inverse if and only if ad — bc # 0, and in that

case
Al = 1 d —b
ad —bc| —c a

In both (a) and (b), check the formula for A~ by multiplying with A and seeing
whether the product is the identity matrix.

(6.20)

With real numbers, the number b has a reciprocal (or inverse) if and only if b 0.
For matrices, this generalizes as follows.

Let A be a square matrix. Then A has an inverse if and only if det(A) # 0.

In this theorem, det(A) denotes the determinant of A. Many people have studied
the determinant in beginning algebra, in association with solving (6.16), so we omit any
theoretical discussion of it. Matrices A for which det(A4) = 0 are called singular, and
those with det(A) 3 0 are called nonsingular.

256 Chapter 6 SOLUTION OF SYSTEMS OF LINEAR EQUATIONS

For A of ordern = 2,

a a
A= 1 a2
az; dx
its determinant is

det(A) = anaz — a12a21 ©(6.21)

6.2.4 Matrix Algebra Rules

Many of the rules of arithmetic with real numbers are still valid for arithmetic with
matrices, but there are some important differences. We simply list these rules, illustrating
and showing a few of them. The matrices in these statements are not restricted to be
square, except when referring to inverses and determinants. The orders of the matrices
in a relation are assumed compatible so that the listed arithmetic expressions make sense.
For example, in (6.24), A and B are rectangular matrices of the same order.

(A+B)+C=A+(B+C) (6.22)
‘ (AB)C = A(BC) (6.23)
A+B=B+A (6.24)
| A(B+C) = AB + AC | (6.25)
] (A+ B)C = AC + BC (6.26)
B (AB)T = BTA” | 6.27)
(A+B)T = AT + BT (6.28)

(cA) ' = %A“l, ¢ = nonzero constant (6.29)

(AB)"! = B71A™! (6.30)

det(AB) = det(A) det(B) (6.31)

det(AT) = det(A) . (6.32)

det(cA) = c" det(A), order (A) = n, ¢ = constant (6.33)

Properties (6.22) and (6.23) are the associative laws, (6.24) is the commutative law,
(6.25) and (6.26) are the distributive laws. Implicit in the relations (6.29) and (6.30) are
the assumptions that A and. B are square matrices of the same order, both invertible. Then
(6.29) states that for any constant ¢ # 0, cA is also invertible and its inverse is given
by LA~1. Similarly, (6.30) states that AB is invertible with (AB)"! givenby B~1A7L.
The properties (6.31), (6.32), and (6.33) give results for the matrix determinant.

Example 6.2.7

Example 6.2.8

6.2 MATRIX ARITHMETIC 257

Let us prove (6.23) as an example. Let A, B, and C have orders m Xn,nxp,
and p x g, respectively. Then AB has order m x p, and BC has order n x q. In the
following, D;; will denote the (i, j) element in a matrix D. Then

p 7 [n
[(AB)C];; = Z(AB)”CU = Z [Z AikBkl:l Cj;
I=1

I=1 Lk=1

n n p
[ABO)];; = ZAik(BC)kj = ZAik [Z Blchlj]
k=1 1=1

k=1

These two right sides are the same, being rearrangements of the sum of all products
AixBuCijfor1 <k <n,1 <! < p. This proves (6.23).

Show that if A has an inverse, then it is unique. To show this, suppose there are two
such inverses B; and B,, with

BiA=AB, =1, ByA=AB, =1
Let us examine the product By A B;. First, by the associative law,
(B1A)B; = B1(AB))
Then from the assumptions on B; and B,

(B1A)B, =1B; = B,
Bi(ABy) = BiI = By

Putting these together proves B; = B,. Thus, A can have only one inverse.

"

=[] e=[i]

det(A) = —2, det(B) =2
31
AB = [71]

det(AB) = —4 = det(A) det(B)

Let

Then

This illustrates (6.31). =

i
il

258

Example 6.2.9

Theorem 6.2.10

Chapter 6 SOLUTION OF SYSTEMS OF LINEAR EQUATIONS

Missing from the preceding list of rules is the commutative law for multiplication
AB = BA (6.34)

because this is not true for most square matrices A and B. Two matrices that do satisfy
(6.34) are said to commute with each other.

Use the matrices A and B from the last example. Then

31 2 -2
AB=[7 1}’ BA:[4 6]

The matrices A and B do not commute. =

6.2.5 Solvability Theory of Linear Systems

Consider the linear system (6.17), Ax = b, where A is a square matrix of order n. In the
theory of the solvability of the linear system (6.17), an important role is played by the
special system obtained by letting all of the constants b; = 0. With this definition of b,
the system is called homogeneous; all other systems are called nonhomogeneous. The
following theorem summarizes some important theoretical results about linear systems.

Let n be a positive integer, and let A be a square matrix of order n. Then the following
are equivalent statements about the linear system (6.17).

S1. For each right side b, the system (6.17) has exactly one solution x.
S2. For each right side b, the system (6.17) has at least one solution x.

S3. The homogeneous form of (6.17) has exactly one solution

X1=X2=---=Xn=0
S4. det(A) # 0.

This chapter considers the solution of nonsingular systems of linear equations. From
(S1) in the above theorem, such systems have a unique solution xy, ..., x, for each set
of right-hand constants by, ..., b,. The remaining parts of the theorem, (S2) to (S4),
are equivalent to (S1); but it is often easier to show that (S1) is true for your system by
instead showing (S2), (S3), or (S4). For example, questions involving the existence and
uniqueness of interpolating polynomials are often treated by first reformulating them
as questions involving linear systems of the form (6.17); then, these systems are often

PROBLEMS

6.2 MATRIX ARITHMETIC 259

treated using (S3). We omit such examples here, but they occur commonly in hi gher-leve]
numerical analysis.
From (S4), the linear system of order 2 associated with this A

anxy + apx; = by
az1x1 + anx; = by

is uniquely solvable for all right-hand sides b if and only if
anay — appay #0

which is an easy condition to check. For systems of larger order, (S4) is also used in
some cases to determine the solvability of the linear system associated with A.
Referring back to Theorem 6.2.6, we see that the existence of A~! is equivalent to
any of the statements (S1) to (S4) of Theorem 6.2.10. Thus, A has an inverse if and only
if the linear system Ax = b has a unique solution x for any right-hand column vector b.

1. Simplify the following matrix expressions to obtain a single matrix for each case:

(a)
10 1 1 2 3
2[—1 3]“{1 —1][1 3}
(b)
) 1 2 a
0 3 0 ¢
(©
A=I3—2wa, wT=[%, %—, %—], B =A?
@
_ cos(f) sin(f) _
A “[—sin(@) cos(8)] B =a4t

260 Chapter 6 SOLUTION OF SYSTEMS OF LINEAR EQUATIONS

(e)
2 10 07
1 2 1
A= 0 o |, B = A?
| 1 2 1
0 - 0 1 2|

2. Let A be an arbitrary square matrix of order 3, and let

A 00
D= 0 1 O
0 0 As

calculate AD and DA. The matrix D is called a diagonal matrix. Give a simple
rule for multiplication of a general matrix by a diagonal matrix.

3. Let A be a square matrix of order n, and let it satisfy
a; =0 for i>j

Such a matrix is called upper triangular. Show that the sum and products of such
matrices are also upper triangular. Is the inverse upper triangular?

4. A square matrix A is called lower triangular if its transpose A7 is upper triangu-

lar. Use this definition, results of the previous problem, and properties of matrix
i transposition to show that the sum and product of lower triangular matrices are
) also lower triangular.

5. Letw be a column vector for which w” w = 1. The product A = ww7 is a square
matrix. Show that A? = A.

6. A matrix B is called symmetric if BT = B. Write a general formula for all sym-
metric matrices of order 2 x 2.

7. Combining ideas from Problems 5 and 6, define a new matrix

B=1-2ww’

where w¥w = 1. Show that B is symmetric and that B2 = . What is B~1?

8. LetAbem x nandlet B ben x p. Do an operations count for calculating AB.
" Consider, in particular, the casesm =n=pandm =n, p = 1.

9. Letu, v, and w be column vectors of length n. Define x = uTvwT by the associa-
tive law for matrix multiplication, («"v) w™ = uT (vwT). Do an operations count
on these two ways of computing x. Which way is preferable from the perspective

i of cost, or does it make any difference?

6.2

10.

11.

12.

13.

14.

15.

16.

MATRIX ARITHMETIC 261

Let A, B,and C have ordersm x n,n X p,and p x gq, respectively. Do operation
counts for the multiplications involved in calculating (AB)C and A(BC). Show
with particular values of m, n, p, and g that these can be very different.

Define B = ww?, with w a column vector of length n.
(a) Give an operations count for forming B. Be as efficient as possible.

(b) Let A be an arbitrary matrix of order n x n. Give the additional number of
operations needed to form the product A and B, using the matrix B formed
in (a).

(¢) Give an alternative and less costly way, in operations, to form the product
AB = A(wwT).

Let u and v be column vectors of length n. Define A = uv” and note that A is a
square matrix of order n x n.

(a) Give the general element A; ;. What is the cost in number of operations to
create A from u and v in the computer?

(b) What is the operations cost of evaluating Ax, where x is a general column
vector of length n?

(¢) Give an alternative and less costly way, in operations, to evaluate Ax =
© o (uvDx.

Use elementary row operations to transform the following matrices to an identity -
matrix:

o [12] o [33]

Use elementary row operations to transform the following matrices to the form:

1 0 x
0 1 x
where x represents some arbitrary number.
2 11 1 4 1
@ [120] (b) [9 35 7]

Produce two square matrices A and B of order 2 for which AB = O, but A and
B have all nonzero elements. Can either of the two matrices be nonsingular?

Let A and B be two square matrices such that A B is singular. Show that either A
or B is singular.

iy

i
o
i
-
i
i
i

Chapter 6 SOLUTION OF SYSTEMS OF LINEAR EQUATIONS

17.

18.

19.

20.
21.

In order that

o]
<[]

what conditions must be satisfied by a, b, ¢, and d?

will commute with

Let A be a square matrix. Show that
(I+2A+3A%) (21 — A) = 2] — A) (I +24 +34%)

thus showing that the matrices I +2A + 3A? and 2/ — A commute.
Remark: Let

p@t) =ag+ait + -+ apt*
q(t) = bo+ b1t + - - + byt*

be polynomials of degrees k and £. Define matrices

p(A) = agl + a1A + - + q A*
q(A) = bol +biA+---+beA*

It can be shown that p(A)q(A) = q(A)p(A).

Using the polynomial matrix notation introduced in Problem 18, let
pO)=(t—r)(t—r) =1 —1@1+r)+rn
For an arbitrary square matrix A, show
PA) =(A—-nD)(A-—rl)=A*—A@+r)+nnl

Derive the formula (6.20) for the inverse of an order 2 matrix.

Check that the inverse of the n x n matrix

1 =1 0 - 07
-1 2 -1

A=| 0 0

-1 2 -1

0 0 -1 2|

e

6.2 MATRIX ARITHMETIC 263

22,

23.

24.
25.

26.

27.

28.

is given by
n n—1 n-2 n-=-3 ... 1
n-1 n—-1 n-2 n-3 ... 1
Al=| n-2 n-2 n-2 n-3 ... 1
1 1 1 1 1

Let Abem x nand Bben x p. Show (AB)T = BT AT,

Hint: Follow the type of proof used for showing (AB)C = A(BC), following
(6.33).

Let A and B be nonsingular matrices of the same order. Show that A B is nonsin-
gular and (AB)™! = B~14-1,

Hint: Multiply by AB.
Show (AT)~! = (A-1)T,

For linear systems of order 2, verify that (S1) is equivalent to (S4) in Theorem
6.2.10.

Recall the reformulation of cubic polynomial interpolation given in Problem 1,
Section 6.1. Show that the linear system for ag, a;, az, a3 always has a unique
solution by proving the equivalent statement (S3) in Theorem 6.2.10.

Hinz: Statement (S3) can be interpreted as a statement about zeros of a cubic
polynomial. How many zeros can a nonzero cubic polynomial possess?

Consider showing the system of Problem 4 of Section 6.1 is nonsingular, by show-
ing (S83) in Theorem 6.2.10. Let x be the solution of the homogeneous system,
and let

-

o = max |x;|
1<izn

This maximum will be attained for at least one of the indices, say, o« = |x;|. Look
at equation k. By using it, one can show that ¢ = 0 is the only possibility for o,
thus showing x; = 0 for all . Do this. Consider separately the possibilities k = 1
orn,and 1 < k < n.

By using Theorem 6.2.6 and assuming det(A) = 0, then there is at least one vector
x # 0 for which Ax = 0. For the following singular matrix, find such an x:

Ll N)
==

1 1
1 1
-1 2
2 -1

264 Chapter 6 SOLUTION OF SYSTEMS OF LINEAR EQUATIONS

29. (a) Find the values of A for which

2 1
det[A] — B] =0, B—[l 2]

These A values are called the eigenvalues of the matrix B, cf. Section 7.2.
(b) Using the X values found in (a), and using the first sentence of Problem 28

with A = Al — B, find an x # 0 for which (A/ — B)x = 0 or, equivalently, :

Bx = Ax. Such a vector x is called an eigenvector associated with the
eigenvalue A.

30. Consider the following matrices, called elementary matrices. Let I be the identity
matrix of order n, and modify its column #k below the diagonal, for some 1 <
k < n — 1. Define

-1 0 -.- 0 0
0 1 0
i o
E = 0
0 a1
0 a2 O
L0 0 0 a 0 --- 0 1]

(a) Show that the products of elementary matrices are lower triangular matrices.
(b) If Ais amatrix of order n x m, show that E; A is formed from A as follows:

Add g; times row #k of A to row #i of A, forming the new row #i of E A, i

fork+1<i<n.Rows1,2,...,kof A are left unchanged.
(¢) Calculate the inverse of E;.

Hint: Use the result of part (b), reversing the operations used in form-
ing E,A. .

6.3. GAUSSIAN ELIMINATION

To solve large systems of linear equations, we use a structured form of the method taught *

in introductory algebra courses. It is introduced here by first using it tosolve a particular -

system of order 3. Consider the system

X1+2x+ x3=0 E(1)

2x1 + 2x3 +3x3 =3 E(2) (6.35) -

—X] — 3.X.'2 =2 E(3)

The individual eqﬁations have been labeled for easier